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TRANSFER LEARNING FOR NONPARAMETRIC
CLASSIFICATION: MINIMAX RATE AND ADAPTIVE

CLASSIFIER†

By T. Tony Cai and Hongji Wei

University of Pennsylvania

Human learners have the natural ability to use knowledge gained
in one setting for learning in a different but related setting. This
ability to transfer knowledge from one task to another is essential
for effective learning. In this paper, we study transfer learning in the
context of nonparametric classification based on observations from
different distributions under the posterior drift model, which is a
general framework and arises in many practical problems.

We first establish the minimax rate of convergence and construct a
rate-optimal two-sample weighted K-NN classifier. The results char-
acterize precisely the contribution of the observations from the source
distribution to the classification task under the target distribution.
A data-driven adaptive classifier is then proposed and is shown to
simultaneously attain within a logarithmic factor of the optimal rate
over a large collection of parameter spaces. Simulation studies and
real data applications are carried out where the numerical results
further illustrate the theoretical analysis. Extensions to the case of
multiple source distributions are also considered.

1. Introduction. A key feature of intelligence is the ability to learn
from experience. Human learners appear to have the talent to transfer their
knowledge gained from one task to another similar but different task. How-
ever, in statistical learning, most procedures are designed to solve one single
task, or to learn one single distribution based on observations from the same
setting. In a wide range of real-world applications, it is important to gain
improvement of learning in a new task through the transfer of knowledge
from a related task that has already been learned. Transfer learning aims
to tackle such a problem. It has attracted increasing attention in machine
learning and has been used in many applications. Recent examples include
computer vision (Tzeng et al., 2017; Gong et al., 2012), speech recognition
(Huang et al., 2013), genre classification (Choi et al., 2017) and also many
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newly designed algorithms such as Yao and Doretto (2010); Lee et al. (2007).
More details about transfer learning can be found in the survey papers (Pan
and Yang, 2010; Weiss et al., 2016).

Besides significant successes in applications, much recent focus has also
been on the theoretical properties of transfer learning. In many practical
situations, there are labeled data available from a distribution P , called the
source distribution, while a relatively small quantity of labeled or unlabeled
data is drawn from a distribution Q, called the target distribution. They
are different but to some extent related distributions. The goal is to make
statistical inference under Q. A natural questions is: How much information
can be transferred from the source distribution P to the target distribution
Q, provided a certain level of similarity between the two distributions?

This is quite a general and challenging question. The problem is also
known as domain adaptation in the binary classification setting. In domain
adaptation, data pairs (X,Y ) are drawn from P and Q defined on Rd×{0, 1}.
Data from the source distribution P can be informative about the target dis-
tribution Q if the two distributions are similar. Several type of assumptions
have been proposed and studied previously in the literature, such as diver-
gence bounds, covariate shift, and posterior drift. The first line of work in
the literature measures the similarity by the divergence between P and Q.
Generalization bounds are derived on unlabeled testing data from the tar-
get distribution Q after training by the data from the source distribution P
(Ben-David et al., 2007; Blitzer et al., 2008; Mansour et al., 2009). These
bounds are general and can be applied to any two distributions, but for
more structured source and target distributions those bounds are not suit-
able. Another line of work imposes some structural assumptions on P and
Q such as covariate shift and posterior drift. Covariate shift assumes that
the conditional distributions of Y given X are the same under P and Q, i.e.
PY |X = QY |X , but the marginal distributions PX and QX can be different.
Such a setting typically arises when the same study/survey is carried out in
different populations. For example, when constructing a classifier for a cer-
tain disease, source data may be generated from clinical studies, but the goal
is to classify people drawn from the general public. The task becomes chal-
lenging due to the difference between the two populations. Transfer learning
under covariate shift has been studied in previous work such as Shimodaira
(2000); Sugiyama et al. (2008); Kpotufe and Martinet (2018).

In the present paper, we study transfer learning under the posterior drift
model, where it is assumed that PX ≈ QX but PY |X and QY |X can highly
differ. To be more specific, suppose there are two data generating distribu-
tions P and Q on Ω×{0, 1}, where Ω ⊂ [0, 1]d. We observe nP independent
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and identically distributed (i.i.d.) samples (XP
1 , Y

P
1 ), ..., (XP

nP
, Y P

nP
) drawn

from a source distribution P , and nQ i.i.d. samples (XQ
1 , Y

Q
1 ), ..., (XQ

nQ , Y
Q
nQ)

drawn from a target distribution Q. The data points from the distributions
P and Q are also mutually independent. For each data point (X,Y ), the
d-dimensional vector X is regarded as covariates (features) of a certain ob-
ject, while Y is a (noisy) binary label indicating to which of the two classes
this object belongs. The goal is to make classification under the target dis-
tribution Q: Given the observed data, construct a classifier f̂ : Ω → {0, 1}
which minimizes the classification risk under the target distribution Q:

R(f̂) , P(X,Y )∼Q(Y 6= f̂(X)).

Here P(X,Y )∼Q(·) means the probability under the distribution Q.
In binary classification, the regression functions are defined as

ηP (x) , P (Y = 1|X = x) and ηQ(x) , Q(Y = 1|X = x),

which can be used to represent the conditional distributions PY |X and QY |X .
In classification, Y can be regarded as an unknown parameter predicted by
X, so from this perspective we refer to PX and QX as the class “prior”
probabilities and ηP (x) and ηQ(x) as the class “posterior” probabilities as-
sociated with P and Q respectively (Scott, 2018). We say a “posterior drift”
happens when PX and QX have the same support with bounded densities,
but ηP (x) and ηQ(x) are highly different.

Posterior drift is a general framework and arises in many applications,
where one collects data from different populations. Here are three examples.

• Crowdsourcing. Crowdsourcing is a distributed model for large-scale
problem-solving and experimentation such as image classification, video
annotation, and translation (Yuen et al., 2011; Karger et al., 2011;
Zhang et al., 2014). The tasks are broadcasted to multiple indepen-
dent workers online in order to collect and aggregate their solutions.
In crowdsourcing, many noisy answers/labels are available from a
large amount of public workers, while sometimes, more accurate an-
swers/labels may be collected from experienced workers or experts.
These expert answers/labels are of higher quality but are relatively
few due to the time or budget constraints. One can view this difference
in labeling accuracy as a posterior drift. It is desirable to construct a
statistical procedure that incorporates both data sets.
• Concept drift. Concept drift is a common phenomenon when the

underlying distribution of the data changes over time in a streaming
environment (Tsymbal, 2004; Gama et al., 2014). One kind of concept
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drift is called real concept drift where the posterior class probabilities
P (Y |X) changes over time. In this situation, posterior drift exists if
data are collected at different time. For example, the incidence rate of
a certain disease in certain groups may change over time due to the
development of treatments and preventive measures.
• Data corruption. Data corruption is ubiquitous in applications, where

unexpected error on data occurs during storage, transmission or pro-
cessing (Menon et al., 2015; van Rooyen and Williamson, 2018). In
many settings, one receives data of variable quality – perhaps some
small amount of clean data, another amount of slightly corrupted data,
yet more that is significantly corrupted, and so on (Crammer et al.,
2006). Data of variable qualities can be viewed as posterior drift be-
tween those data generating distributions, thus better strategies are
needed to tackle the problem within the posterior drift framework.

Under the posterior drift model, the main difference between P and Q
lies in the regression functions ηP (x) and ηQ(x). So the relationship between
ηP (x) and ηQ(x), which can be captured by the link function φ defined below,
is important in characterizing the difficulty of the transfer learning problem.
In this work, we propose a new concept called the relative signal exponent
γ to describe the relationship between ηP (x) and ηQ(x). Our results show
that the relative signal exponent γ plays an important role in the minimax
rate of convergence for the excess risk under the posterior drift model.

For conceptual simplicity, we assume ηP (x) = φ(ηQ(x)) for some strictly
increasing link function φ(·) with φ(1

2) = 1
2 . Note that this is only a simplified

version of our formal model which will be given in Section 2. It is natural
to assume φ is strictly increasing in the settings where those X that are
more likely to be labeled Y = 1 under Q are also more likely to be labeled
Y = 1 under P . The assumption φ(1

2) = 1
2 means that those X that are non-

informative under Q are the same under P . Formally, for a given relative
signal exponent γ > 0 and a constant Cγ > 0, we denote by Γ(γ,Cγ) the
collection of all distribution pairs (P,Q) satisfying

(1) (φ(x)− 1

2
)(x− 1

2
) ≥ 0 and |φ(x)− 1

2
| ≥ Cγ |x−

1

2
|γ .

The relative signal exponent is a key parameter in capturing the usefulness
of the data from the source distribution P for the task of classification under
the target distribution Q. The smaller the relative signal exponent, the more
information transferable from P to Q.

In this work we consider transfer learning under the posterior drift model
in a nonparametric classification setting. When Q satisfies the margin as-
sumption with the parameter α, defined in Section 2, and ηQ(x) belongs
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to the (β,Cβ)-Hölder function class, it is shown that, under the regularity
conditions, the minimax optimal rate of convergence is given by

(2) inf
f̂

max
(P,Q)∈Π

EZEQ(f̂) � (n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d ,

where nP and nQ are number of data drawn from P and Q respectively,
d is the number of features, and Π is the posterior drift regime where the
distribution pair (P,Q) belongs to the class Γ(γ,Cγ) with the relative signal

exponent γ and satisfies some additional regularity conditions. Here EQ(f̂)
is the excess risk on Q which is defined based on the misclassification error:

(3) EQ(f̂) = RQ(f̂)−RQ(f∗Q)

where

(4) f∗Q(x) =

{
0 if ηQ(x) ≤ 1

2

1 otherwise

is the Bayes classifier under Q. The expectation EZ in (2) is taken over the
random realizations of all the observed data, namely the set Z, defined as

(5) Z , {(XP
1 , Y

P
1 ), ..., (XP

nP
, Y P

nP
), (XQ

1 , Y
Q

1 ), ..., (XQ
nQ
, Y Q

nQ
)}.

Note that if one only had observations from the target distribution Q,

the minimax rate would be n
−β(1+α)

2β+d

Q . Therefore, the additional term n
2β+d
2γβ+d

P

in the minimax rate (2) quantifies an “effective sample size” for transfer
learning from the source distribution P relative to Q, and 2β+d

2γβ+d can be
viewed as the optimal transfer rate. This result answers one of the main

questions in transfer learning: n
2β+d
2γβ+d

P is the total amount of information
that can be transferred from P to Q, and this quantity depends on the
relative signal exponent γ which characterizes the discrepancy between P
and Q in posterior drift.

We construct a two-sample weighted K-nearest neighbors (K-NN) clas-
sifier and show that it attains the optimal rate given in (2). However, this
classifier depends on the parameters α, β, and γ, which are typically un-
known in practice. In this paper, we also propose a data-driven classifier f̂a
that automatically adapts to the unknown model parameters α, β and γ,
with an additional log term on the excess risk bound:

sup
(P,Q)∈Π

EZEQ(f̂a) .

((
nP

log(nP + nQ)

) 2β+d
2γβ+d

+
nQ

log(nP + nQ)

)−β(1+α)
2β+d

.
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This adaptive procedure is essentially different from either the non-adaptive
procedure given in this paper, or any nonparametric classification procedures
in the literature. The adaptive classifier is constructed based on the ideas
inspired by Lepski’s method for nonparametric regression. The construction
begins with a small number of the nearest neighbors, and gradually increases
the number of the neighbors used to make the decision. The algorithm ter-
minates once an empirical signal-to-noise ratio reaches a delicately designed
threshold. It is shown that the resulting data-driven classifier automatically
adapts to a wide collection of parameter spaces.

In some applications, there are data available from multiple source dis-
tributions. Intuitively, the samples from all source distributions are helpful
to the classification task under the target distribution. We also consider
transfer learning in this setting under the posterior drift model. Suppose
there are multiple source distributions P1, . . . , Pm and one target distribu-
tion Q, each pair of distributions (Pi, Q) has a relative signal exponent γi,
i ∈ {1, . . . ,m}. The minimax optimal rate of convergence is established and
the result quantifies precisely the contributions from the data generated by
the individual source distributions. An adaptive procedure is constructed
and shown to simultaneously attain the optimal rate up to a logarithmic
factor over a large class of parameter spaces.

The rest of the paper is organized as follows. In Section 2, after some ba-
sic notations and definitions are introduced, the model for transfer learning
under the posterior drift model is proposed in a nonparametric classification
setting. In Section 3, we establish the minimax optimal rate by constructing
a minimax optimal procedure with guaranteed upper bound and a match-
ing lower bound. In section 4, a data-driven adaptive classifier is proposed
and is shown to adaptively attain the optimal rate of convergence, up to a
logarithmic factor. Section 6 investigates the numerical performance of the
data driven procedure. In section 7, a real data application is carried out
to further illustrate the benefit of our method. Section 5 considers transfer
learning with multiple source distributions and a brief discussion is given in
Section 8. For reasons of space, we prove one main result in Section 9 and
provide the proofs of the other results and some technical lemmas in the
Supplementary Material (Cai and Wei, 2019).

2. Problem Formulation. We introduce in this section the posterior
drift model. We begin with notation and basic definitions.

2.1. Notation and definitions. For a distribution G, denote by G(·) and
EG(·) respectively the probability and expectation under G. Denote by PX
and QX the marginal distribution of X under the joint distributions P and
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Q for (X,Y ) respectively. Let supp(·) denote the support of a probability
distribution. Throughout the paper we write ‖ · ‖ to denote the Euclidean
norm. We use I{·} to denote the indicator function taking values in {0, 1}.
We define a ∨ b = max(a, b), a ∧ b = min(a, b), and bac be the maximum
integer that is not larger than a. We denote by B(x, r) a Euclidean ball
centered at x with radius r. We write λ(·) to denote Lebesgue measure of a
set in a Euclidean space. We denote by C or c some generic constants not
depending on nP or nQ that may vary from place to place.

2.2. Posterior drift in nonparametric classification. For two distribu-
tions P and Q for a random pair (X,Y ) taking values in [0, 1]d × {0, 1}, we

observe two independent random samples, (XP
1 , Y

P
1 ), . . . , (XP

nP
, Y P

nP
)

iid∼ P

and (XQ
1 , Y

Q
1 ), . . . , (XQ

nQ , Y
Q
nQ)

iid∼ Q. We shall use P -data and Q-data to re-
fer to the data sets drawn from the distributions P and Q respectively. We
consider the transfer learning problem when there is a posterior drift be-
tween P and Q. In the posterior drift model, the covariates/features X are
drawn from distributions having the same support with bounded densities,
but the response/label Y has different conditional distributions given X be-
tween P and Q. The readers should notice that the model we introduced in
Section 1 is a special case within the model we will introduce in this section.

The regression functions have been defined informally in the introduction,
now we give a precise definition. Let

ηP (x) =

{
P (Y = 1|X = x) if x ∈ supp(PX)
1
2 otherwise

ηQ(x) =

{
Q(Y = 1|X = x) if x ∈ supp(QX)
1
2 otherwise

denote the corresponding regression functions of P and Q. Besides the pre-
vious definition (4) of Bayes classifier under the target distribution Q, we
can similarly define the Bayes classifier for the source distribution P as:

f∗P (x) =

{
0 if ηP (x) ≤ 1

2

1 otherwise
.

Now assume (XP , Y P ) is a data pair drawn from the distribution P . From
the definition, given XP = x, Y P is more likely to be equal to 1 if f∗P (x) = 1
whereas Y P is more likely to be equal to 0 if f∗P (x) = 0. It is similar for the
distribution Q. Thus informally one can regard f∗P (x) (f∗Q(x)) as the true
label at the covariate value x under the distribution P (Q).
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In transfer learning, although the observed data are drawn from two or
more different distributions, these distributions are usually related to each
other so that all of them are useful for learning the intrinsic true labels.
For instance, in a crowdsourcing survey, although accuracy varies among
different workers, their answers should be no worse than random guessing.
It is reasonable to assume that the answer is correct with probability at least
1
2 . This means we may reasonably assume that, given the same covariate x,
the “true labels” under the distributions P and Q are the same. That is

f∗(x) , f∗P (x) = f∗Q(x) ∀x ∈ supp(PX),

which is equivalent to

(ηP (x)− 1

2
)(ηQ(x)− 1

2
) ≥ 0.

The definitions and assumptions introduced so far treat the P -data and
Q-data symmetrically and interchangeably. But in real applications, usually
the two data sets are treated differently. We call P the source distribution
and Q the target distribution. The goal is to transfer the knowledge gained
from the P -data together with the information contained in the Q-data for
constructing an optimal classifier under the target distribution Q.

Intuitively it is clear that the amount of information that can be trans-
ferred from the P -data for the inference under Q depends on the similarity
between the distributions P and Q. In this paper, we quantify the similarity
by the relative signal exponent of P with respect to Q.

Definition 1 (Relative Signal Exponent). The class Γ(γ,Cγ) with rel-
ative signal exponent γ ∈ (0,∞) and a constant Cγ ∈ (0,∞) is defined as
the set of distribution pairs (P,Q), both supported on Rd×{0, 1}, satisfying
∀x ∈ supp(PX) ∪ supp(QX),

(ηP (x)− 1

2
)(ηQ(x)− 1

2
) ≥ 0(6)

|ηP (x)− 1

2
| ≥ Cγ |ηQ(x)− 1

2
|γ .(7)

Remark 1. The relative signal exponent γ indicates the signal strength
of the P -data relative to the Q-data. Note that |ηQ(x)− 1

2 | is always bounded
by 1/2. So generally speaking, the smaller γ is, the larger the difference
between ηP (x) and 1

2 , which means the P -data is more informative about
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Fig 1: Illustration of the relative signal exponent γ. Left panel: feasible region when
γ = 0.5 and Cγ = 0.5. A pair of distributions (P,Q) has relative signal exponent
γ = 0.5 with Cγ = 0.5 when (ηP (x), ηQ(x)) falls into the shaded (blue) region for
all x in the support. Right panel: feasible region with different choices of γ. Smaller
γ implies more information contains in PY |X .

f∗(x) and consequently more information can be transferred from the P -
data to the Q-data.

One can see that the above definition of relative signal exponent implies
when |ηQ(x) − 1

2 | is large, then |ηP (x) − 1
2 | should be relatively large. This

is intuitively true in a wide range of real applications. Taking again the
crowdsourcing surveys as an example. If one crowd of workers can answer
a question correctly with a larger probability, then for another crowd of
workers the accuracy of their answers is also usually larger because this
question is likely to be easier.

In addition to the relative signal exponent γ, we also need to define a
smoothness parameter of ηQ and characterize its behavior near 1/2:

Definition 2 (Smoothness). The (β,Cβ)−Hölder class of functions (0 <
β ≤ 1), denoted by H(β,Cβ), is defined as the set of functions g : Rd → R
satisfying, for any x1, x2 ∈ Rd,

|g(x1)− g(x2)| ≤ Cβ‖x1 − x2‖β.

Definition 3 (Margin Assumption). The margin class M(α,Cα) with
α ≥ 0, Cα > 0 is defined as the set of distributions Q satisfying

QX(|ηQ(X)− 1

2
| < t) ≤ Cαtα.
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In this paper we consider the nonparametric classification problem when
ηQ(x) belongs to a (β,Cβ)−Hölder class and Q belongs to a margin class
M(α,Cα). When Q ∈ M(α,Cα), we also say that Q satisfies the margin
assumption with the parameter α.

Remark 2. In the main part of our discussion, we focus on the case with
0 < β ≤ 1, i.e. η belongs to a Hölder function class with smoothness less
than or equal to 1. Generally it is possible to consider more general classes
where the smoothness parameter can be larger than 1. The discussion on
the model and methods associated with the general smoothness parameter
β > 1 will be deferred to the discussion section.

The margin assumption was first introduced in Tsybakov (2004); Audibert
and Tsybakov (2007) to characterize the convergence rate in nonparametric
classification. The margin assumption put a constraint on the mass around
ηQ(x) ≈ 1

2 so that with large probability ηQ(x) is either 1
2 or far from 1

2 .
Generally, if an underlying distribution satisfies the margin assumption, then
a more accurate classification can be guaranteed.

Another definition is about density constraints on the marginal distribu-
tions PX and QX .

Definition 4 (Common Support and Strong Density Assumption). (PX , QX)
is said to have common support and satisfy strong density assumption with
parameter µ = (µ−, µ+), cµ > 0, rµ > 0 if both PX and QX are absolutely
continuous with respect to the Lebesgue measure on Rd, and

Ω , supp(PX) = supp(QX)

λ[Ω ∩B(x, r)] ≥ cµλ[B(x, r)] ∀0 < r ≤ rµ,∀x ∈ Ω

µ− <
dPX
dλ

(x) < µ+ ∀x ∈ Ω

µ− <
dQX
dλ

(x) < µ+ ∀x ∈ Ω.

Define S(µ, cµ, rµ) to be the set of the marginal densities pairs (PX , QX)
that have common support and satisfy the strong density assumption with
parameter µ, cµ, rµ.

Remark 3. The strong density assumption was first introduced in Au-
dibert and Tsybakov (2007). In this paper we focus on the scenario that
the marginal densities of PX and QX have regular support and are bounded
from below and above on the support.
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Moreover, note that when QX satisfies the strong density assumption,
in the regime αβ > d, there is no distribution Q such that the regression
function ηQ crosses 1

2 in the interior of the support QX (Audibert and Tsy-
bakov, 2007). So this regime only contains the trivial cases for classification.
Therefore, we further assume αβ ≤ d in the following discussion.

Given a classifier f̂ : Rd → {0, 1}, the excess risk on Q of the classifier f̂ ,
defined in equation (3), has a dual representation (Gyorfi, 1978)

(8) EQ(f̂) = 2E(X,Y )∼Q(|ηQ(X)− 1

2
|I{f̂(X)6=f∗Q(X)}).

A major goal in transfer learning is to construct an empirical decision
rule f̂ incorporating both the P -data and Q-data, so that the excess risk on
Q is minimized. It is interesting to understand when the minimax rate in
the transfer learning setting is faster than the optimal rate where only the
Q-data is used to construct the decision rule.

Putting the above definitions together, in this paper we consider the pos-
terior drift nonparametric parameter space:

Π(α,Cα, β, Cβ, γ, Cγ , µ, cµ, rµ) = {(P,Q) : (P,Q) ∈ Γ(γ,Cγ), Q ∈M(α,Cα),

ηQ ∈ H(β,Cβ), (PX , QX) ∈ S(µ, cµ, rµ)}.

In the rest of this paper, we will use the shorthand Π(α, β, γ, µ) or Π if
there is no confusion. The space Π(α, β, γ, µ) is also called the posterior drift
regime with (α, β, γ, µ).

3. Minimax Rate of Convergence. In this section, we establish the
minimax rate of convergence for the excess risk on Q for transfer learning
under the posterior drift model and propose an optimal procedure using the
two-sample weighted K-NN classifier.

The K-NN method has attracted much attention (Cover and Hart, 1967;
Gyorfi, 1978; Gadat et al., 2016) due to its massive practical success and
appealing theoretical properties. In the conventional setting where one only
has access to the Q-data and there is no P -data, with a suitable choice of
the neighborhood size k, the K-NN classifier can achieve the minimax rate
of convergence for the excess risk on Q (Gadat et al., 2016). The K-NN
classifier is generated in two steps:

Step 1: For any given x to be classified, one can estimate ηQ(x) by taking
the empirical mean of the response variables (Y ) according to its k
nearest covariates (X). Formally, define XQ

(i)(x) be the i-th nearest
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covariates to x among XQ
1 , ..., X

Q
nQ and Y Q

(i)(x) is its corresponding

response (label). The estimate η̂Q(x) is given by

η̂Q(x) =
1

k

k∑
i=1

Y Q
(i)(x).

Step 2: The class label for x is estimated by the plug-in rule:

f̂(x) = I{η̂Q(x)> 1
2
}.

In transfer learning, one also has access to the P -data in addition to the Q-
data, the P -data can be used to help the classification task under the target
distribution Q and should be taken into consideration. To accommodate the
existing K-NN methods, we should take the empirical mean of not only the
k-nearest response variables from the Q-data, but also some nearest response
variables from the P -data. In addition, when taking the average, data from
the different distributions should have different weights because the signal
strength varies between the two distributions. To make the classification at
x ∈ [0, 1]d, a new strategy called the two-sample weighted K-NN classifier
is summarized as follows:

Step 1: Define XP
(i)(x) to be the i-th nearest covariates to x among XP

1 , ..., X
P
nP

and Y P
(i)(x) is its corresponding response. XQ

(i)(x) and Y Q
(i)(x) can be

defined likewise. Construct the two-sample weighted K-NN estimator

η̂NN (x) =
wP
∑kP

i=1 Y
P

(i)(x) + wQ
∑kQ

i=1 Y
Q

(i)(x)

wPkP + wQkQ

where the number of neighbors kP and kQ and the weights wP and wQ
will be specified later.

Step 2: The class label for x is estimated by the plug-in rule:

f̂NN (x) = I{η̂NN (x)> 1
2
}.

The final decision rule f̂NN (x), which is generated by both the P -data
and Q-data, is called the two-sample weighted K-NN classifier.

The performance of the two-sample weighted K-NN classifier f̂NN (x)
clearly depends on the choice of (kP , kQ, wP , wQ). The next theorem gives a
set of choices of (kP , kQ, wP , wQ) and a provable upper bound on the excess
risk, which gives a guarantee for the performance of the two-sample weighted
K-NN classifier with these specific choices of (kP , kQ, wP , wQ).
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Fig 2: An illustration of the two-sample weighted K-NN classifier. (XP , Y P ) are
shown by the blue points and (XQ, Y Q) are shown by the red points. For each point
in the graph, the coordinates represent its two-dimensional covariates X while the
number marked inside the point represents its label Y . To classify the black point
(x) located in middle of the graph, by calculation we get (say) kP = 2 and kQ = 4.
Then we find kP nearest neighbors from P -data and kQ nearest neighbors from
Q-data. Finally, we calculate their weighted mean to make the final classification.

Theorem 1 (Upper Bound). Let f̂NN be the two-sample weighted K-

NN classifier with wQ = (n
2β+d
2γβ+d

P + nQ)
− β

2β+d , wP = (n
2β+d
2γβ+d

P + nQ)
− γβ

2β+d ,

kQ = bnQ(n
2β+d
2γβ+d

P + nQ)
− d

2β+d c, and kP = bnP (n
2β+d
2γβ+d

P + nQ)
− d

2β+d c. Then

sup
(P,Q)∈Π

EZEQ(f̂NN ) ≤ C(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d

for some constant C > 0 not depending on nP or nQ.

The following lower bound result shows that the two-sample weighted
K-NN classifier f̂NN given in Theorem 1 is in fact rate optimal.

Theorem 2 (Lower Bound). There exists a constant c > 0 not depend-
ing on nP or nQ such that

inf
f̂

sup
(P,Q)∈Π

EZEQ(f̂) ≥ c(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d .

The proof of Theorem 1 will be given in Section 9, which is based on
the general techniques for proving K-NN methods, for instance, see Gadat
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et al. (2016); Samworth (2012). In the literature of classical nonparamet-
ric classification problem, the focus was mainly on bias-variance trade-off.
Under posterior drift model, we further extend the general techniques to
the two-sample setting, where the weights and the number of neighbors are
carefully selected to make the best combination of information. The proof
of Theorem 2 is given in the supplementary material (Cai and Wei, 2019),
using the same general scheme as in (Audibert and Tsybakov, 2007; Kpotufe
and Martinet, 2018). Theorems 1 and 2 together establish the minimax rate
of convergence for transfer learning under the posterior drift model,

(9) inf
f̂

sup
(P,Q)∈Π

EZEQ(f̂) � (n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d .

We make a few remarks on the minimax rate of convergence.

• Based on the minimax rate given in (9), it is easy to see that, in
terms of the classification accuracy, the contribution from the P -data is

substantial when n
2β+d
2γβ+d

P � nQ, and the contribution is not significant
otherwise.
• Comparing the convergence rates (9) with (10), the minimax rate for

transfer learning under the posterior drift model is the same as if

one had a sample of size n
2β+d
2γβ+d

P + nQ from the distribution Q in the

conventional setting. Therefore, one can intuitively view n
2β+d
2γβ+d

P as the
“effective sample size” of the P -data for the classification task under
Q. The exponent 2β+d

2γβ+d here can be regarded as the transfer rate. The

smaller the relative signal exponent γ is, the larger 2β+d
2γβ+d is, and more

information is transferred from the P -data. This transfer rate provides
a quantitative answer to the question posed in the introduction: How
much information can be transferred from the source distribution P
to the target distribution Q? It is also interesting to note that, when
γ < 1, 2β+d

2γβ+d > 1, which implies that in this case an observation from
P is more valuable than an observation from Q for the classification
problem.
• In the transfer learning literature, much attention has been on an inter-

esting special case where there is no data from the target distribution
Q at all, i.e., nQ = 0 (Mansour et al., 2009; Blitzer et al., 2008). This
case arises when a classifier has been trained based on the data drawn
from the source distribution P , and one wishes to generalize the clas-
sifier to unlabeled testing data drawn from the target distribution Q.
Our results show that generalization is possible in the posterior drift
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framework and the optimal rate of convergence is

inf
f̂

sup
(P,Q)∈Π

EZEQ(f̂) � n−
β(1+α)
2γβ+d

P .

• It is worth noting that in the conventional setting with access to the Q-
data only, the minimax rate, which is given in Audibert and Tsybakov
(2007), would be

(10) inf
f̂

sup
(P,Q)∈Π

EZEQ(f̂) � n−
β(1+α)
2β+d

Q ,

which is a special case of (9) with nP = 0. This rate can be achieved

by the K-NN classifier given above with the choice of k � n
2β

2β+d

Q .

4. Data-driven Adaptive Classifier. In the previous section, we have
established the minimax optimal rate over the parameter space Π(α, β, γ, µ)
for transfer learning under the posterior drift model. This rate can be achieved
by the two-sample weighted K-NN classifier given in Theorem 1. A major
drawback of this classifier is that it requires the prior knowledge of β and γ,
which is typically unavailable in practice. An interesting and practically im-
portant question is whether it is possible to construct a data-driven adaptive
decision rules that can achieve the same rate of convergence, while automat-
ically adapt to a wide collection of the parameter spaces Π(α, β, γ, µ).

In nonparametric regression, Lepski’s method (Lepski, 1991, 1992, 1993)
is a well known approach for the construction of a data driven estimator
that adapts to the unknown smoothness parameter β by screening from
a small bandwidth to larger bandwidths with delicately designed stopping
rules. This procedure can be used for nonparametric classification in the
conventional setting where only Q-data is available and only adaptation to
one smoothness parameter β is needed. For readers’ convenience we include
this construction in Section 9. The transfer learning setting is more chal-
lenging: we need to adapt to bothparameters β and γ. In this section, we
modify Lepski’s method in our context and introduce a new stopping rule
and show that the resulting classifier adapts to all unknown parameters.

Now we develop a data-driven procedure to make classification at a spe-
cific point x ∈ [0, 1]d. The construction combines all data points from the
P -data and the Q-data together and finds nearest neighbors among all the
data. Denote by X(i)(x) the i-th nearest data point to x in the combined set

{XP
1 , ..., X

P
nP
} ∪ {XQ

1 , ..., X
Q
nQ}. Similar to Lepski’s method, we begin with

a small number of nearest neighbors, and gradually increase the number of
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neighbors used to make the decision. One more nearest neighbor is added in
each step. At the k-th step, there are k nearest neighbors X(1)(x), ..., X(k)(x)

among all the points in the combined set {XP
1 , ..., X

P
nP
} ∪ {XQ

1 , ..., X
Q
nQ}.

Suppose among these k nearest neighbors there are k
(k)
P points from the P -

data and k
(k)
Q points from the Q-data. Heuristically, given these k nearest

neighbors, one can obtain a weighted K-NN estimate as

η̂(k)(x,wP , wQ) =
wP
∑k

(k)
P
i=1 Y

P
(i)(x) + wQ

∑k
(k)
Q

i=1 Y
Q

(i)(x)

wPk
(k)
P + wQk

(k)
Q

.

If β and γ are known, one can calculate the optimal choice of the weights
wP and wQ for a two-sample weighted K-NN classifier. To construct an
adaptive procedure, we need to find a data driven method for choosing the
weights wP and wQ. Define the “variance” of η̂(k)(x,wP , wQ) as

v(k)(wP , wQ) =
w2
Pk

(k)
P + w2

Qk
(k)
Q

(wPk
(k)
P + wQk

(k)
Q )2

.

For a given k, we call the maximum value of the ratio between (η̂(k)(x,wP , wQ)−
1
2)2 and the “variance” v(k)(wP , wQ) as the signal-to-noise ratio index r̂(k):

r̂(k) = max
wP ,wQ

(η̂(k)(x,wP , wQ)− 1
2)2

v(k)(wP , wQ)
.

The algorithm is terminated when r̂(k) > (d + 3) log(nP + nQ), and the

corresponding wP and wQ are chosen as the maximizers of
(η̂(k)(x,wP ,wQ)− 1

2
)2

v(k)(wP ,wQ)
.

If the algorithm doesn’t terminate at any step, the optimal k can be alter-
natively chosen by the maximizer of r̂(k). That is, we choose k = k∗ with

(11)

k∗ =

{
min{k : r̂(k) > (d+ 3) log(nP + nQ)} if maxk r̂

(k) > (d+ 3) log(nP + nQ)

argmaxk r̂
(k) otherwise

and choose (wP , wQ) = (w∗P , w
∗
Q) with

(w∗P , w
∗
Q) = argmax(wP ,wQ)

(η̂(k∗)(x,wP , wQ)− 1
2)2

v(k∗)(wP , wQ)
.

The data driven adaptive classifier is then defined as

f̂a(x) = I{η̂(k∗)(x,w∗P ,w∗Q)≥ 1
2
}.
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Algorithm 1 The Data Driven Procedure

Input: x ∈ supp(QX)
for k = 1, ..., (nP + nQ − 1), (nP + nQ) do

Find k nearest covariates to x among all covariates in data
{XP

1 , X
P
2 , ..., X

P
nP
} ∪ {XQ

1 , X
Q
2 , ..., X

Q
nQ
}. Suppose among those k nearest neigh-

bors X(1)(x), X(2)(x), ..., X(k)(x) there are k
(k)
P covariates from P -data and k

(k)
Q

covariates from Q-data.
Compute k

(k)
P nearest neighbor estimate in P -data (If k

(k)
P = 0, set η̂

(k)
P ← 1

2
)

η̂
(k)
P ← 1

k
(k)
P

k
(k)
P∑
i=1

Y P(i)(x)

and k
(k)
Q nearest neighbor estimate in P -data (If k

(k)
Q = 0, set η̂

(k)
Q ← 1

2
)

η̂
(k)
Q ← 1

k
(k)
Q

k
(k)
Q∑
i=1

Y P(i)(x)

Let r̂(k) be the signal-to-noise ratio index calculated by

r̂(k) ←


k
(k)
P

(
η̂
(k)
P −

1
2

)2
+ k

(k)
Q

(
η̂
(k)
Q −

1
2

)2
if sign(η̂

(k)
P −

1
2
) = sign(η̂

(k)
Q −

1
2
)

max

(
k
(k)
P

(
η̂
(k)
P −

1
2

)2
, k

(k)
Q

(
η̂
(k)
Q −

1
2

)2)
if sign(η̂

(k)
P −

1
2
) 6= sign(η̂

(k)
Q −

1
2
)

Define the intermediate classifier by

f̂ (k)(x)← I
{
√
k
(k)
P

(
η
(k)
P
− 1

2

)
+

√
k
(k)
Q

(
η
(k)
Q
− 1

2

)
≥0}

if r̂(k)(x) > (d+ 3) log(nP + nQ) then
Stop and output f̂a(x)← f (k)(x)

Output f̂a(x)← f̂ (km)(x) where km = argmaxk r̂
(k)

Remark 4. The choice of (d + 3) log(nP + nQ) as the threshold in the
stopping rule (11) is important and requires some explanation. Roughly
speaking, this is due to the fact that the maximum fluctuation of η̂(k)(x,wP , wQ)

is bounded by
√

(d+ 3) log(nP + nQ)v(k)(wP , wQ) with high probability,

which will be shown in Lemma 5 with a suitable change of parameter (stated
in the supplementary material (Cai and Wei, 2019)). Thus, when r̂(k) >
(d + 3) log(nP + nQ), η̂(k)(x,wP , wQ) > 1

2 indicates Eη̂(k)(x,wP , wQ) > 1
2 ,

which suggests f∗(x) = 1, and vice versa.

The procedure is summarized in Algorithm 1 where the above procedure
is simplified by using the actual closed form expression for r̂(k) and f̂a(x).

We investigate the theoretical properties of this data-driven classifier f̂a
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r̂(k) > T?

Yes

Output f̂ (k)
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Output f̂ (k)

No

k = 7

r̂(k) > T?

Yes

Output f̂ (k)

Fig 3: An illustration of the adaptive procedure given in Algorithm 1. See
figure 2 for interpretation of the graph. Here we shorthand the threshold
T = (d+ 3) log(nP + nQ). In each step, we evaluate r(k) and compare it to

the threshold R. If r(k) > T , then output f̂ (k) generated in current step; if
r(k) ≤ T , go to next step and add one more nearest neighbor.

in terms of both global and local adaptivity. The theoretical analysis shows
that the proposed classifier is, both globally and locally, adaptive to the
unknown smoothness and relative signal exponent.

4.1. Global adaptivity. Note that f̂a is a data-driven classifier. The fol-
lowing theorem gives an upper bound for the excess risk under Q:

Theorem 3. Let n = nP + nQ. There exists a constant C > 0 not
depending on nP or nQ such that

(12) sup
(P,Q)∈Π

EZEQ(f̂a) ≤ C
((

nP
log n

) 2β+d
2γβ+d

+
nQ

log n

)−β(1+α)
2β+d

.

The proof of Theorem 3 is given in the supplementary material (Cai and
Wei, 2019).

Comparing the rate of convergence in (12) for the adaptive classifier
f̂a with the minimax rate (9), the data driven classifier f̂a simultaneously
achieves within a logarithmic factor of the minimax optimal rate over a large
collection of parameter spaces.
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Remark 5. If only the Q-data is available and Lepski’s method is ap-
plied, then the following upper bound on the excess risk under Q holds:

(13) sup
(P,Q)∈Π

EZEQ(f̂L) ≤ C ·
(

nQ
log nQ

)−β(1+α)
2β+d

.

One can verify that by setting nP = 0, our new adaptive procedure is exactly
equivalent to Lepski’s method (Algorithm 3), while the rates of convergence
for the two methods also coincide.

4.2. Local adaptivity. In practice, one might be focused on classifying
a given observation x0 and thus especially interested in the accuracy of a
classifier at a specific point x0. Interestingly, the weights wP and wQ, the

number k of neighbors of the proposed classifier f̂a(x) are all locally selected
and calculated based on samples in a neighborhood of x. It is of practical
interest to investigate the local adaptivity of the proposed classifier.

In order to study the local behavior of the classifier f̂a at a given point
x0, we need to extent the definitions for the posterior drift model to their
local versions. First, we define the local excess risk on Q at a point x0:

Definition 5. For any x0 ∈ Ω and a classifier f̂ : Ω → {0, 1}, define
the classification risk at x0 on distribution Q for f̂ as:

R(f̂ , x0) = P(X,Y )∼Q(Y 6= f̂(x0)|X = x0).

Further, define the local excess risk at x0 on distribution Q for f̂ as

EQ(f̂ , x0) = R(f̂ , x0)−R(f∗Q, x0).

Next, we give a formal definition for local smoothness β0 = β(x0) and
local relative signal exponent γ0 = γ(x):

Definition 6. A function g : Rd → R has local Hölder smoothness β0

(0 < β0 ≤ 1) at point x0 ∈ Rd if there exists r > 0 and Cβ > 0 such that for
any x′ ∈ B(x0, r),

|g(x′)− g(x0)| ≤ Cβ‖x′ − x0‖β.

Definition 7. A pair of distributions (P,Q), both supported on Ω ×
{0, 1}, are defined to have local relative signal exponent γ0 at a point x0 ∈ Ω,
if there exists r > 0 and Cγ > 0 such that for any x ∈ B(x0, r),

(ηP (x)− 1

2
)(ηQ(x)− 1

2
) ≥ 0
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|ηP (x)− 1

2
| ≥ Cγ |ηQ(x)− 1

2
|γ .

The definitions of local smoothness and local relative signal exponent are
similar to their global versions, except we only consider in a small neighbor-
hood of x0. Based on the above definitions, the local adaptivity of f̂a at x0

is characterized as follows:

Theorem 4. Suppose the distributions (P,Q) are both supported on Ω×
{0, 1} and a point x0 ∈ Ω. Suppose the following holds.

1. (P,Q) have local relative signal exponent γ0 at x0;
2. ηQ has local Hölder smoothness β0 at x0;
3. (PX , QX) ∈ S(µ, cµ, rµ), i.e. PX and QX have common support and

satisfy the strong density assumption.

Let n = nP + nQ. There exists a constant C > 0 such that

(14) EZEQ(f̂a, x0) ≤ C

( nP
log n

) 2β0+d
2γ0β0+d

+
nQ

log n

−
β0

2β0+d

The proof of Theorem 4 is provided in the supplementary material.

Remark 6. Under the same setting as in Theorem 4, when β0 and γ0

are known, the local minimax rate of convergence is

inf
f̂

sup
(P,Q)

EZEQ(f̂a, x0) � (n
2β0+d

2γ0β0+d

P + nQ)
− β0

2β0+d

where the supremum is taken over all distribution pairs (P,Q) satisfying
conditions 1,2,3 stated in Theorem 4. This minimax rate can be achieved
by the same construction as the minimax classifier in Section 3 (using local
parameters β0, γ0 instead of global parameters β, γ). As a result, Theorem 4
shows that f̂a also achieves within a logarithmic factor of the local minimax
optimal rate. In other words, f̂a adapts to local smoothness and local signal
relative exponent.

Remark 7. For simplicity, the present paper focuses on the posterior
drift model, which is somewhat restrictive since the relation between P and
Q is described by a signal parameter γ. However, because f̂a is adaptive to
the local signal relative exponent, it can make nearly optimal classification
under heterogeneity where γ varies. In other words, f̂a works optimally even
when P is stronger than Q in some places and weaker than Q elsewhere.
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Remark 8. Note that there is also a dual representation of EZEQ(f̂a, x0):

EZEQ(f̂a, x0) = 2|ηQ(x0)− 1

2
|PZ

(
f̂a(x0) 6= f∗Q(x0)

)
Theorem 4 can be interpreted as follows. For any point x0, the classifier

f̂a performs well (i.e. the accuracy of f̂a is bounded away from 1/2) when

|ηQ(x0)− 1

2
| ≥ C

( nP
log n

) 2β0+d
2γ0β0+d

+
nQ

log n

−
β0

2β0+d

for some constant C > 0. Other than the sample sizes nP and nQ, the rate
only depends on the local smoothness β0 and local relative signal exponent
γ0. Also, it is optimal up to a logarithmic factor. The result thus shows that
f̂a is adaptive to the local smoothness and local relative signal exponent.

5. Multiple Source Distributions. We have so far focused on trans-
fer learning with one source distribution P and one target distribution Q.
In practice, data may be generated from more than one source distribution.
In this section, we generalize our methods to treat transfer learning in the
setting where multiple source distributions are available.

We consider a model where there are several source distributions with
different relative signal exponents with respect to the target distribution Q.
Suppose there are nP1 , ..., nPm , and nQ i.i.d data points generated from the
source distributions P1, ..., Pm, and the target distribution Q respectively,

(XP1
1 , Y P1

1 ), ..., (XP1
nP1

, Y P1
nP1

)
iid∼ P1

...

(XPm
1 , Y Pm

1 ), ..., (XPm
nPm

, Y Pm
nPm

)
iid∼ Pm

(XQ
1 , Y

Q
1 ), ..., (XQ

nQ
, Y Q

nQ
)

iid∼ Q

and all the samples are independent. The goal is to make classification under
the target distribution Q. Similar as before, it is intuitively clear that how
useful the data from the source distributions Pi, i ∈ [m], to the classifica-
tion task under Q depends on the relationship between each Pi and Q. The
definition of the relative signal exponent needs to be extended to accommo-
date the multiple source distributions. It is natural to consider the situation
where each source distribution Pi and the target distribution Q have a rela-
tive signal exponent. This motivates the following definition of the vectorized
relative signal exponent when there are multiple source distributions.
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Definition 8. Suppose the distributions P1, ..., Pm, and Q are supported
on Rd × {0, 1}. Define the class Γ(γ, Cγ) with the relative signal exponent
γ = (γ1, ..., γm) ∈ Rm+ and constants Cγ = (C1, ..., Cm) ∈ Rm+ , is the set
of distribution tuples (P1, ..., Pm, Q) that satisfy, for each i ∈ [m], (Pi, Q)
belongs to the class Γ(γi, Ci) with the relative signal exponent γi.

Similar as in Section 2, adding the regularity conditions onQ including the
smoothness, margin assumption and strong density assumption, we define
the parameter space in the multiple source distributions setting as follows:

Π(α,Cα, β, Cβ,γ, Cγ , µ, cµ, rµ) = {(P1, ..., Pm, Q) : (P1, ..., Pm, Q) ∈ Γ(γ, Cγ),

Q ∈M(α,Cα), ηQ ∈ H(β,Cβ), (Pi,X , QX) ∈ S(µ, cµ, rµ) for all i ∈ [m]}.

We will simply denote Π(α,Cα, β, Cβ,γ, Cγ , µ, cµ, rµ) by Π or Π(α, β,γ, µ)
if there is no confusion.

In this section we establish the minimax optimal rate of convergence and
propose an adaptive classifier which simultaneously achieves the optimal
rate of convergence within a logarithmic factor over a wide collection of the
parameter spaces. The proofs are similar to those for Theorems 1, 2 and 3 in
the one source distribution setting. For reasons of space, we omit the proofs.

5.1. Minimax rate of convergence. We begin with the construction of a
minimax rate optimal classifier f̂NN in the case of multiple source distri-
butions. The classifier is an extension of the two-sample weighted K-NN
classifier given in Section 3. It incorporates the information contained in the
data drawn from the source distributions Pi, i ∈ [m], as well as the data
drawn from the target distribution Q. The detailed steps are as follows.

Step 1: Compute the weights wP1 , ..., wPm , and wQ by

wPi = (nQ +
m∑
i=1

n
2β+d

2γiβ+d

Pi
)
− γiβ

2β+d , for all i ∈ [m],

wQ = (nQ +
m∑
i=1

n
2β+d

2γiβ+d

Pi
)
− β

2β+d .

Compute the numbers of neighbors kP1 , ..., kPm , kQ by

kPi = bnPi(nQ +

m∑
i=1

n
2β+d

2γiβ+d

Pi
)
− d

2β+d c, for all i ∈ [m]

kQ = bnQ(nQ +

m∑
i=1

n
2β+d

2γiβ+d

Pi
)
− d

2β+d c.
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Step 2: DefineXPi
(j)(x) to be the j-th nearest data point to x amongXPi

1 , ..., XPi
nPi

and Y Pi
(j)(x) is its corresponding response (label). Likewise, let XQ

(j)(x)

be the j-th data point to x among XQ
1 , ..., X

Q
nQ and Y Q

(j)(x) is its cor-

responding response (label). Define the weighted K-NN estimator

η̂NN (x) =
wQ
∑kQ

j=1 Y
Q

(j)(x) +
∑m

i=1

(
wPi

∑kPi
j=1 Y

Pi
(j)(x)

)
wQkQ +

∑m
i=1wPikPi

.

This estimator takes weighted average of kPi nearest neighbors from
the data points drawn from Pi, each with weight wPi , and kQ nearest
neighbors from the data points drawn from Q, each with weight wQ.

Step 3: The final classifier is then defined as

f̂NN (x) = I{η̂NN (x)> 1
2
}.

We now analyze the theoretical properties of the classifier f̂NN . Theorem 5
gives an upper bound for the excess risk EQ(f̂NN ), while Theorem 6 provides
a matching lower bound on the excess risk. These two theorems together
establish the minimax rate of convergence and show that f̂NN attains the
optimal rate. In the following theorems, the expectation E is taken over
random realization of all data drawn from source and target distributions.

Theorem 5 (Upper Bound). There exists a constant C > 0 not depend-
ing on nP or nQ, such that

sup
(P1,...,Pm,Q)∈Π(α,β,γ,µ)

EEQ(f̂NN ) ≤ C(nQ +

m∑
i=1

n
2β+d

2γiβ+d

Pi
)
−β(1+α)

2β+d .

Theorem 6 (Lower Bound). There exists a constant c > 0 not depend-
ing on nP or nQ, such that

inf
f̂

sup
(P1,...,Pm,Q)∈Π(α,β,γ,µ)

EEQ(f̂) ≥ c(nQ +

m∑
i=1

n
2β+d

2γiβ+d

Pi
)
−β(1+α)

2β+d .

Theorems 5 and 6 together yield the minimax optimal rate for transfer
learning with multiple source distributions:

(15) inf
f̂

sup
(P1,...,Pm,Q)∈Π(α,β,γ,µ)

EEQ(f̂) � (nQ +
m∑
i=1

n
2β+d

2γiβ+d

Pi
)
−β(1+α)

2β+d .
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As discussed in Section 3, here n
2β+d

2γiβ+d

Pi
can be viewed as the effective sam-

ple size for data drawn from the source distribution Pi when the information
in this sample is transferred to help the classification task under the target
distribution Q. Even when there are multiple source distributions, the trans-
fer rate associated with Pi remains to be 2β+d

2γiβ+d , which is not affected by
the presence of the data drawn from the other source distributions.

5.2. Adaptive classifier. Again, the minimax classifier is not practical
as it depends on the parameters γ and µ which are typically unknown. It
is desirable to construct a data driven classifier that does not rely on the
knowledge of the model parameters. A similar adaptive data-driven classifier
can be developed. The detailed steps are summarized in Algorithm 2.

It is clear from the construction that the classifier f̂a is a data-driven de-
cision rule. Theorem 7 below provides a theoretical guarantee for the excess
risk of f̂a under the target distribution Q. In view of the optimal rate given
in (15), Theorem 7 shows that f̂a is adaptively nearly optimal over a wide
range of parameter spaces.

Theorem 7. Let n = nQ +
∑m

i=1 nPi. There exists a constant C > 0
such that for Π = Π(α, β,γ, µ),

sup
(P1,...,Pm,Q)∈Π

EEQ(f̂a) ≤ C ·
(
nQ

log n
+

m∑
i=1

(
nPi

log n

) 2β+d
2γiβ+d

)−β(1+α)
2β+d

.
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Algorithm 2 The Data Driven Classifier

Input: x ∈ supp(QX)
for k = 1, ..., (nQ +

∑m
i=1 nPi − 1), (nQ +

∑m
i=1 nPi) do

Find k nearest neighbors X(1)(x), ..., X(k)(x) to x among all the covariates {XQ
j :

j ∈ [nQ]} ∪
⋃m
i=1{X

Pi
j : j ∈ [nPi ]}. Suppose k

(k)
Pi

of them are from the distribution

Pi, i = 1, . . . ,m, and k
(k)
Q of them are from Q. That is, the k nearest neighbors are

partitioned into m+ 1 parts according to which distribution they are drawn from.
For each i ∈ [m], Compute the K-NN estimate for ηPi (If k

(k)
Pi

= 0, set η̂
(k)
Pi
← 1

2
)

η̂
(k)
Pi

(x)← 1

k
(k)
Pi

k
(k)
Pi∑
j=1

Y Pi
(j) (x)

and nearest neighbor estimate for ηQ (If k
(k)
Q = 0, set η̂

(k)
Q ← 1

2
)

η̂
(k)
Q ← 1

k
(k)
Q

k
(k)
Q∑
i=1

Y P(i)(x).

Compute the positive signal-to-noise index

r̂
(k)
+ ← I{η(k)

Q
≥ 1

2
}k

(k)
Q

(
η
(k)
Q −

1

2

)2

+

m∑
i=1

I{η(k)
Pi
≥ 1

2
}k

(k)
Pi

(
η
(k)
Pi
− 1

2

)2

and negative signal-to-noise index

r̂
(k)
− ← I{η(k)

Q
< 1

2
}k

(k)
Q

(
η
(k)
Q −

1

2

)2

+

m∑
i=1

I{η(k)
Pi

< 1
2
}k

(k)
Pi

(
η
(k)
Pi
− 1

2

)2

.

Let r̂(k) be the signal-to-noise ratio index calculated by

r̂(k) ← max
{
r̂
(k)
+ , r̂

(k)
−

}
.

Define the classifier
f̂ (k)(x)← I{r̂(k)

+ ≥r̂(k)
− }.

if r̂(k) > (d+ 3) log(nQ +
∑m
i=1 nPi) then

Stop and output f̂a(x)← f (k)(x).

Output f̂a(x)← f̂ (km)(x) where km = argmaxk r̂
(k).
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6. Numerical Studies. In this section, we carry out simulation studies
to further illustrate the performance of the adaptive transfer learning pro-
cedure. Numerical comparisons with the existing methods are given. The
simulation results are consistent with the theoretical predictions.

For all simulation experiments in this section, the data is generated un-
der the posterior drift model with d = 2. The distributions (P,Q) used to
generate data is specified as following:

1. Marginal distributions: PX = QX are both uniform distribution on
the square Ω = [−1, 1]2.

2. Regression functions: ηQ and ηP are defined as

ηQ(x) = 0.5 + p sign(x1) (|x1|max{0, 1− |x2|})β

and
ηP (x) = 0.5 + p sign(x1) (|x1|max{0, 1− |x2|})γβ

where x = (x1, x2) ∈ [−1, 1]2, p, β and γ are parameters that may vary
in different simulation studies.

According to the above construction, both ηP and ηQ take the maximum
values at (1, 0) and the minimum values at (−1, 0), and equal to 0.5 when
x1 = 0. it can be easily verified that ηQ ∈ H(β,Cβ) with some Cβ > 0,
(P,Q) ∈ Γ(γ, 1), Q satisfies the margin assumption with α = 0.99/β, and
PX and QX have the common support and bounded densities.

In the following experiments, we focus on evaluating the average excess
risk at a random test sample x drawn uniformly from the square Ω =
[−1, 1]2, given nP data generated from P and nQ data generated from Q.

6.1. Minimax non-adaptive classifier. For this particular distribution pair
(P,Q), theoretically, the minimax rate of convergence for the excess risk can
be achieved via the two-sample weighted K-NN classifier when we are able
to make use of model parameters β, γ. In the following simulation, we fix
p = 0.03, nQ = 1000 and β = 1. By comparing the proposed non-adaptive
classifier with a naive K-NN classifier on just the Q-data, we evaluate the
improvement on the excess risk under different values of γ and nP .

During the experiment, we generated datasets with choices of the relative
signal exponent γ ∈ {0.7, 0.5, 0.35} and number of P -data nP varying from
50 to 3200. The excess risk of the two-sample weighted K-NN classifier
and the naive K-NN method are illustrated in Figure 4a. Meanwhile, a
planer plot is given in Figure 4b to illustrate the expected ratio of the excess
risk between the two methods based on our developed theory (Theorem 1).
One can clearly see how the transfer rates play a role in the experiments
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(b) Theoretical prediction

Fig 4: Left: Experiments on non-adaptive methods. We operate the naive K-NN
method on only Q-data (dashed line) and our two-sample weighted K-NN classifier
on different datasets. The datasets are generated with relative signal exponent
γ = 0.7, 0.5, 0.35 respectively. Right: based on our theory (Theorem 1), the expected
ratio of excess risk between the two methods we operate in the experiment.

with different relative signal exponent γ. The empirical performance and our
theoretical prediction are matched to some extent.

6.2. Adaptive classifier. We also compare the proposed adaptive clas-
sifier with the existing methods to see whether its numerical performance
matches its theoretical guarantees. Lepski’s method is a good competitor
as it is also adaptive to the smoothness parameter β. Following a similar
routine as in the previous experiments, we compare the excess risk between
our proposed classifier and Lepski’s method applying only the Q-data to
evaluate the improvement we may gain empirically.

Fix p = 0.03 and β = 1, we generated nQ = 1000 data from the target
distribution Q, and nP ∈ {50, 100, 200, 400, 800, 1600, 3200} data from the
source distribution P with different choices of relative signal exponent γ ∈
{0.7, 0.5, 0.35}. Results of the numerical experiments are shown in Figure 5a.
A figure of the expected improvement on excess risk, calculated according to
Theorem 3, is also available in Figure 5b. In both figures, the curve looks like
a reversed ”S” shape when γ is large, whereas a curve of exponential decrease
appears when γ is small. Therefore, it is justified that the simulation results
are consistent with the theoretical predictions.

6.3. Multiple source distributions. Other than involving only a single
source distribution during the previous numerical studies, it is also worth-
while to see whether we can gain desired improvement as our theory predicts
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Fig 5: Left: Experiments on adaptive methods. We operate the naive Lepski method
on only Q-data (dashed line) and our adaptive classifier on different datasets. The
datasets are generated with relative signal exponent γ = 0.7, 0.5, 0.35 respectively.
Right: based on our theory (Theorem 3), the expected ratio of excess risk between
the two methods used in the experiment.

when there are multiple source distributions. We only illustrate in this sub-
section the performance of our adaptive classifier applying to multiple source
distributions (Algorithm 2).

Different from the previous simulation studies, in this subsection we gen-
erate data from three different source distributions P1, P2, P3 and one target
distribution Q. In a similar vein, the distributions (P1, P2, P3, Q) are speci-
fied as following:

1. Marginal distributions: we set P1,X = P2,X = P3,X = QX to be all
uniformly distributed on the square area Ω = [−1, 1]2.

2. Regression functions: we set ηQ and ηP1 , ηP2 , ηP3 as

ηQ(x) = 0.5 + p sign(x1) (|x1|max{0, 1− |x2|})β

and

ηPi(x) = 0.5 + p sign(x1) (|x1|max{0, 1− |x2|})γiβ i = 1, 2, 3

where x = (x1, x2) ∈ [−1, 1]2, p, β and γ1, γ2, γ3 are parameters that
will be specified later.

In the simulation, we fix p = 0.03, β = 1 and γ1 = 0.35, γ2 = 0.5, γ3 =
0.7, and we always set nP1 = nP2 = nP3 . We compare the average excess
risk of the two classifiers: our proposed adaptive classifier and the Lepski’s
procedure with only Q−data involved. By varying number of data drawing



TRANSFER LEARNING 29

10 20 40 80 160 320 640
0

10

20

30

nPi

E
x
ce

ss
ri

sk
(×

10
4
)

Lepski(Q)
Our adaptive classifier

(a) Experimental results

10 20 40 80 160 320 640
0

20

40

60

80

100

120

nPi

E
x
p

ec
te

d
E

x
ce

ss
ri

sk
ra

ti
o

(%
)

Our adaptive classifier

(b) Theoretical prediction

Fig 6: Left: Experiments on transfer learning from multiple source distributions.
We apply the naive Lepski method on only Q-data (dashed line) and our adaptive
classifier for multiple source distributions. Right: based on our theory (Theorem
5), the expected ratio of excess risk between the two methods we operate in the
experiment.

from source distributions, we can clearly see an improvement when applying
transfer learning methods.

The excess risk of the two methods during the experiments are illustrated
in Figure 6a. Also, we calculate the expected ratio between the two methods
according to the theory we developed in Theorem 5. Again, the empirical
performance and our theoretical prediction are similar to some extent.

For reasons of space, additional simulation results on different choices of
β are given in the supplementary material (Cai and Wei, 2019).

7. Application to Crowdsourced Mapping Data. To illustrate the
proposed adaptive classifier, we consider in this section an application based
on the crowdsourced mapping data (Johnson and Iizuka, 2016). Land use/land
cover maps derived from remotely-sensed imagery are important for geo-
graphic studies. This dataset contains Landsat time-series satellite imagery
information on given pixels and their corresponding land cover class la-
bels (farm, forest, water, etc.) obtained from multiple sources. The goal
is to make classification of land cover classes based on NDVI (normalized
difference vegetation index) values of those remotely-sensed imagery from
the years 2014-2015. In this paper we focus on classification of two specific
classes: farm and forest.

Within this dataset, there are two kinds of label sources, given the NVDI
values of the images: 1) crowdsourced georeferenced polygons with land cover
labels obtained from OpenStreetMap; 2) accurately labeled data by experts.
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Fig 7: (a) Illustration of the dataset. Each row represents one of a land cover class
(farm or forest) and corresponding NDVI values of a pixel from remotely-sensed
imagery in 2014-2015. (b) Accuracy of the three methods on the crowdsourced
mapping data with different numbers of crowdsourced data involved. Blue: The
proposed adaptive classifier. Red: Lepski’s method using combined data. Brown:
Lepski’s method using only crowdsourced data.

Although crowdsourced data are massive, free and public, the labels contain
various types of errors due to user mislabels or outdated images. Whereas
the expert labels are almost accurate, but they are usually too expensive to
obtain a large volume. The challenge is to accurately combine the informa-
tion contained in the two datasets to minimize the classification error.

As in Section 6.2, we apply three methods to make the classification:
(1) our proposed adaptive procedure; (2) Lepski’s method with all data
involved where we do not distinguish data from different sources; (3) Lepski’s
method with only the crowdsourced data. We use nP = 50 accurately labeled
data, and change the number of involved crowdsourced data from nQ = 25
to nQ = 800. We use other 166 accurately labeled data to evaluate the
classification accuracy of the three methods mentioned above.

Figure 7b shows the accuracy of the three methods with different numbers
of crowdsourced data involved. As more and more crowdsourced data are
used, the amount of information contained in the crowdsourced data grad-
ually increases, and the relative contribution from the accurately labeled
data gradually decreases. The proposed adaptive classifier consistently out-
performs the naive Lepski’s method, especially when the number of the
crowdsourced data is between 100 and 400, because in these cases the adap-
tive classifier can significantly increase the accuracy by better leveraging the
information gained from both distributions.
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8. Discussion. We studied in this paper transfer learning under the
posterior drift model and established the minimax rate of convergence. The
optimal rate quantifies precisely the amount of information in the P -data
that can be transferred to help classification under the target distribution
Q. A delicately designed data-driven adaptive classifier was also constructed
and shown to be, both globally and locally, adaptive to the unknown smooth-
ness and relative signal exponent. It is simultaneously within a log factor of
the optimal rate over a large collection of parameter spaces.

The results and techniques developed in this paper serve as a starting
point for the theoretical analysis of other transfer learning problems. For
example, in addition to classification, it is also of significant interest to
characterize the relationship between the source distribution and the tar-
get distribution, so that the data from the source distribution P can help in
other statistical problems under the target distribution Q. Examples include
regression, hypothesis testing, and construction of confidence sets. We will
investigate these transfer learning problems in the future.

Within the posterior drift framework of this paper, some of the tech-
nical assumptions can be relaxed to a certain extent. For the smoothness
parameter β, we focused on the case 0 < β ≤ 1. It is possible to consider
more general classes where β can be larger than 1, with strenthened rela-
tive signal exponent assumptions on the higher order derivatives of ηP (x)
and ηQ(x). When β > 2, the problem mighted be solved with a carefully
designed weighted K-NN classifier, as was introduced in Samworth (2012).
Construction of such a weighted K-NN method is involved and we leave
it as future work. For the marginal distributions PX and QX , other than
the strong density assumption, there are also weaker regularity conditions
introduced in the literature. See, for example, Gadat et al. (2016); Kpotufe
and Martinet (2018). Similar results on the minimax rate of convergence can
be established under these different regularity conditions. The minimax and
adaptive procedures should also be suitably modified.

Also, in complementary work, Kpotufe and Martinet (2018) studied K-
NN classifiers for transfer learning in the covariate shift framework where
the marginal distributions PX and QX are allowed to differ significantly.
It is interesting to consider nonparametric classification under both covari-
ate shift and posterior drift. In such a setting, besides the relative signal
exponent γ, one also assumes (P,Q) have transfer-exponent τ ≥ 0 such that

∀x, r ∈ (0,∆X ], PX(B(x, r)) ≥ QX(B(x, r)) · Cτ
(

r

∆X

)τ
,

and QX is (Cd, d)-doubling, as is defined in Definitions 3 and 6 in Kpotufe
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and Martinet (2018). The detailed analysis appears to be quite involved,
we only make some conjectures here based on our preliminary calculations
and leave the rigorous proofs and further investigations for future work. Our
calculations indicate that the optimal rate of convergence for the excess risk
on Q under both covariate shift (transfer-exponent τ) and posterior drift
(relative signal exponent γ) should be

inf
f̂

sup
(P,Q)

EZEQ(f̂) �
(
nP

2β+d
2γβ+τ+d + nQ

)−β(1+α)
2β+d

.

An additional transfer-exponent τ appears in the denominator of the
transfer rate 2β+d

2γβ+τ+d . The above optimal rate can be achieved by two-
sample weighted K-NN classifier (proposed in our work) with proper choices
of wP , wQ, kP and kQ. In addition, our proposed classifier f̂a should be nearly
optimal adaptive classifier (up to a logrithmic term) in a sense that

sup
(P,Q)

EZEQ(f̂) .

((
nP

log n

) 2β+d
2γβ+τ+d

+
nQ

log n

)−β(1+α)
2β+d

where n = nP + nQ.

9. Proofs. We prove Theorem 1 in this section and leave the proofs
of other theorems and additional technical lemmas in the supplementary
material (Cai and Wei, 2019). For readers’ convenience, we begin by stating
Lepski’s method for nonparametric classification in the conventional setting
where there are only the Q-data.

9.1. Lepski’s method. Algorithm 3 is a version of Lepski’s method in
nonparametric classification. We state the algorithm here for reference.

Algorithm 3 Lepski’s method (Lepski and Spokoiny, 1997)

Input: n labeled samples (Xi, Yi) ∈ Rd × {0, 1}, i ∈ [n], and a point x ∈ Rd to be
classified.
Set η−0 ← −∞ and η+0 ← +∞.
for k = 1, ..., (nP + nQ − 1), (nP + nQ) do

Find k nearest neighbor estimates η̂k(x) = 1
k

∑k
i=1 Y(i), where Y(i) denote the label

to i-th nearest covariates to x.

Set η−k ← η−k−1 ∨ (η̂k(x)−
√

d+3
k

logn).

Set η+k ← η+k−1 ∧ (η̂k(x) +
√

d+3
k

logn).

if η−k > 1
2

or η+k < 1
2
then

Stop and output f̂L(x)← I{η̂k(x)≥ 1
2
}.

Output f̂L(x)← I{η̂n(x)≥ 1
2
}.
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9.2. Proof of Theorem 1. First we define some new notations for conve-
nience. In the proof, we use ζQ(x) = |ηQ(x)−1

2 | and ζP (x) = |ηP (x)−1
2 | to de-

note the signal strength. Let Ȳ Q
(1:kQ)(x) := 1

kQ

∑kQ
i=1 Y

Q
(i)(x) and Ȳ P

(1:kP )(x) :=

1
kP

∑kP
i=1 Y

P
(i)(x) denote the average of kQ nearest neighbors in Q−data and

kP nearest neighbors in P−data respectively. We will sometime omit x in
the notations such as XQ

(i)(x), XP
(i)(x) if there is no confusion in the context.

We also use the shorthand XQ
1:nQ

to denote the whole set of the Q−data

covariates {XQ
1 , ..., X

Q
nQ}. And similarly XP

1:nP
denotes {XP

1 , ..., X
P
nP
}. We

define EY |X(·) = E(·|XQ
1:nQ

, XP
1:nP

) to denote the expectation conditional
on the covariates of all data, and E is the expectation taken over random
realization of all data (the same as EZ we defined before). Also, in follow-
ing proofs we always assume (P,Q) ∈ Π(α, β, γ, µ) so we will not state this
assumption again in the lemmas.

Before proving the theorem, we first state three useful lemmas. The first
lemma 1 provides a high probability uniform bound on the distance between
any point and its k−th nearest neighbor.

Lemma 1 (K-NN Distance Bound). There exists a constant CD > 0

such that, with probability at least 1− CD nQ
kQ

exp(−kQ
6 ), for all x ∈ Ω,

(16) ‖XQ
(kQ)(x)− x‖ ≤ CD(

kQ
nQ

)
1
d .

And with probability at least 1− CD nP
kP

exp(−kP
6 ), for all x ∈ Ω,

(17) ‖XP
(kP )(x)− x‖ ≤ CD(

kP
nP

)
1
d .

Let EQ denote the event that Inequality (16) holds for all x ∈ Ω and let
EP denotes (17) holds for all x ∈ Ω. It follows from Lemma 1 that

P(EQ) ≥ 1− CD
nQ
kQ

exp(−kQ
6

) and P(EP ) ≥ 1− CD
nP
kP

exp(−kP
6

).

Lemma 2 points out that when the signal is sufficiently strong, bias of
Ȳ Q(x) and Ȳ P (x) will not be too large to overwhelm the signal.

Lemma 2 (Bias Bound). There exist constants cb, Cb > 0 such that:
If a point x ∈ Ω satisfies ζQ(x) ≥ 2Cβ‖XQ

(kQ)(x)− x‖β, then we have

EY |X(Ȳ Q
(1:kQ)(x))− 1

2
≥ cbζQ(x) if f∗(x) = 1,(18)

EY |X(Ȳ Q
(1:kQ)(x))− 1

2
≤ −cbζQ(x) if f∗(x) = 0.(19)
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If a point x ∈ Ω satisfies ζQ(x) ≥ 2Cβ‖XP
(kP )(x)− x‖β, then we have

EY |X(Ȳ P
(1:kP )(x))− 1

2
≥ cbζQ(x)γ if f∗(x) = 1,(20)

EY |X(Ȳ P
(1:kP )(x))− 1

2
≤ −cbζQ(x)γ if f∗(x) = 0.(21)

Hence, if a point x ∈ Ω satisfies ζQ(x) ≥ Cb(max{ kQnQ ,
kP
nP
})βd , then

• Under the event EQ, we have

EY |X(Ȳ Q
(1:kQ)(x))− 1

2
≥ cbζQ(x) if f∗(x) = 1,(22)

EY |X(Ȳ Q
(1:kQ)(x))− 1

2
≤ −cbζQ(x) if f∗(x) = 0.(23)

• Under the event EP , we have

EY |X(Ȳ P
(1:kP )(x))− 1

2
≥ cbζQ(x)γ if f∗(x) = 1,(24)

EY |X(Ȳ P
(1:kP )(x))− 1

2
≤ −cbζQ(x)γ if f∗(x) = 0.(25)

Lemma 3 gives a bound on the probability of misclassification at certain
covariates x.

Lemma 3 (Misclassification Bound). Let Cb and cb be the constants de-

fined in Lemma 2. If ζQ(x) ≥ Cb(max{ kQnQ ,
kP
nP
})βd , then

• Under the event EQ, we have

PY |X(f̂NN (x) 6= f∗Q(x)) ≤ exp

(
−2

[(cbwQkQζQ(x)− wPkP ) ∨ 0]2

kPw2
P + kQw2

Q

)
.

• Under the event EP , we have

PY |X(f̂NN (x) 6= f∗Q(x)) ≤ exp

(
−2

[(cbwPkP ζQ(x)γ − wQkQ) ∨ 0]2

kPw2
P + kQw2

Q

)
.

• Under the event EP ∩ EQ, we have

PY |X(f̂NN (x) 6= f∗Q(x)) ≤ exp

(
−2c2

b

(wPkP ζQ(x)γ + wQkQζQ(x))2

kPw2
P + kQw2

Q

)
.
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Given the three lemmas above, the remain proof generally follows that of

Lemma 3.1 in Audibert and Tsybakov (2007). Let δ = (n
2β+d
2γβ+d

P + nQ)
− β

2β+d .
When wP , wQ, kP , kQ are given as in Theorem 1, we have

(26) wQ = δ, wP = δγ , kQ = bnQδ
d
β c, kP = bnP δ

d
β c.

We will approximate kQ = nQδ
d
β and kP = nP δ

d
β in the following proof

because one can easily show such an approximation only result sin changing
the constant factor in the upper bound.

The following lemma gives a bound for the local misclassification risk
when the parameters in the weighted K-NN estimator are properly chosen.

Lemma 4. Using wP , wQ, kP , kQ defined in theorem 1 to construct a

weighted K-NN estimator f̂NN . Then there exist constants c1, C1 > 0 such

that, with probability at least 1− 2(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d , for all x we have

(27) PY |X(f̂NN (x) 6= f∗Q(x)) ≤ C1 exp

(
−c1(

ζQ(x)

δ
)1∧γ

)
.

Let E0 be the event that inequality (27) holds for all x. Lemma 4 implies

P(E0) ≥ 1− 2(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d .

Consider the disjoint sets Aj ⊂ Ω, j = 0, 1, 2, ... defined as

A0 := {x ∈ Ω : 0 < ζQ(x) ≤ δ},
Aj := {x ∈ Ω : 2j−1δ < ζQ(x) ≤ 2jδ} for j ≥ 1.

Note that by the margin assumption, for all j,

QX(Aj) ≤ QX(|ηQ −
1

2
| ≤ 2jδ) ≤ Cα2αjδα.

Based on the partition A0, A1, ... and the dual representation of EQ(f̂)

shown in (8), we have a decomposition of EQ(f̂NN ):

EQ(f̂NN ) = 2EX∼QX (|ηQ(X)− 1

2
|I{f̂NN (X)6=f∗Q(X)})

= 2

∞∑
j=0

EX∼QX (ζQ(X)I{f̂NN (X)6=f∗Q(X)}I{X∈Aj}).
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For j = 0, EX∼QX (ζQ(X)I{f̂NN (X)6=f∗Q(X)}I{X∈A0}) ≤ δ·QX(A0) ≤ Cαδα+1.

Under the event E0, 2j−1δ < ζ(x) ≤ 2jδ for x ∈ Aj and j > 1. Inequality
(27) now yields

EY |XEX∼QX (ζQ(X)I{f̂NN (X)6=f∗Q(X)}I{X∈Aj})

= EX∼QX (ζQ(X)PY |X(f̂NN (X) 6= f∗Q(X))I{X∈Aj})

≤ 2jδ · C1 exp(−c1 · 2(j−1)·(1∧γ)) ·QX(Aj)

≤ CαC1[2(1+α)j exp(−c1 · 2(j−1)·(1∧γ))]δα+1.

Combining these summands together yields

EY |XEQ(f̂NN ) = 2
∞∑
j=0

EY |XEX∼QX (ζQ(X)I{f̂NN (X)6=f∗Q(X)}I{X∈Aj})

≤ 2Cα

1 + C1

∞∑
j=0

[2(1+α)j exp(−c1 · 2(k−1)·(1∧γ))]

 δ1+α

≤ Cδ1+α.

where the last step follows from the fact that
∑∞

j=0[2(1+α)j exp(−c1·2(k−1)·(1∧γ))]
converges when γ > 0. Finally, it follows from Lemma 4 that

P(Ec0) ≤ 2(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d .

Applying the trivial bound EQ(f̂NN ) ≤ 1 when Ec0 occurs, we have

EEQ(f̂NN ) = E(EY |XEQ(f̂NN ))

≤ E(EY |XEQ(f̂NN )|E0)P(E0) + E(EY |XEQ(f̂NN )|Ec0)P(Ec0)

≤ C(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d · 1 + 1 · 2(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d

= (C + 2)(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d .

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Transfer Learning for Nonpara-
metric Classification: Minimax Rate and Adaptive Classifier”
(doi: url to be specified). In this supplementary material, we provide addi-
tional simulation results, proofs for Theorems 2, 3, and 4, and proofs for
technical lemmas 1, 2, 3, and 4. The proofs of Theorems 5, 6, and 7 are
similar and thus omitted.

http://dx.doi.org/url to be specified
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SUPPLEMENT TO “TRANSFER LEARNING FOR
NONPARAMETRIC CLASSIFICATION: MINIMAX RATE

AND ADAPTIVE CLASSIFIER”†

By T. Tony Cai, and Hongji Wei

University of Pennsylvania

We present in this supplement additional simulation results, and
the detailed proofs of Theorems 2, 3 and Theorem 4 in the paper
“Transfer Learning for Nonparametric Classification: Minimax Rate
and Adaptive Classifier”. We also prove the technical lemmas 1, 2, 3,
and 4.

1. Additional Simulation Results. In this section we are going to
provide additional simulation results under the same settings as in Section
6, except that in this section the we also change the value of β during each
numerical experiment. The focus is to study the behavior of the proposed
procedure under different smoothness parameters of the regression function
ηQ(x).

1.1. Minimax non-adaptive classifier. We first make comparison between
two-sample weighted K-nearest neighbor classifier and the naive K−nearest
neighbor classifier on just the Q-data. Under fixed parameters p = 0.03 and
nQ = 1000, we generate datasets under different choices of smoothness pa-
rameter β ∈ {0.35, 0.5, 0.7}, relative signal exponent γ ∈ {0.35, 0.5, 0.7}, and
varying sample size of P−data nP from 50 to 3200. The average excess risk
is given in Table 1.

1.2. Adaptive classifier. Then we compare the performance of our pro-
posed adaptive classifier f̂a with Lepski’s method on just the Q-data. Under
fixed parameters p = 0.03 and nQ = 1000, we generate datasets under dif-
ferent choices of smoothness parameter β ∈ {0.35, 0.5, 0.7}, relative signal
exponent γ ∈ {0.35, 0.5, 0.7}, and varying sample size of P−data nP from
50 to 3200. The average excess risk is given in Table 2.

1.3. Multiple source distributions. Finally we carry out simulations to
illustrate the performance of our adaptive classifier when there are multiple

†The research was supported in part by NSF Grant DMS-1712735 and NIH grants
R01-GM129781 and R01-GM123056.
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http://arxiv.org/abs/arXiv:0000.0000
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source distributions. Similar as what we do in Section 6.3, in the numerical
experiments we fix p = 0.03 and γ1 = 0.35, γ2 = 0.5, γ3 = 0.7, and we always
set nP1 = nP2 = nP3 = n. By changing the smoothness parameter β and
number of data drawing from the source distributions n, we compare the
average excess risk of our proposed adaptive classifier with Lepski’s method
on only Q−data. Simulation results are provided in Table 3.

β Method γ nP = 50 100 200 400 800 1600 3200

0.35
2SWKNN

0.35 36.1 33.8 30.6 25.4 17.0 10.8 8.8
0.5 35.0 33.8 31.8 30.1 28.9 24.0 21.9
0.7 38.1 37.2 36.7 35.4 33.9 33.3 31.9

Naive KNN - 37.7

0.5
2SWKNN

0.35 29.4 26.4 22.0 15.3 10.5 6.7 4.1
0.5 32.1 32.2 28.2 24.7 23.0 17.0 14.4
0.7 35.5 33.2 32.4 31.2 29.4 28.0 27.4

Naive KNN - 33.2

0.7
2SWKNN

0.35 24.7 21.2 15.8 9.7 6.4 2.8 1.4
0.5 27.9 24.5 23.4 19.0 16.1 11.7 8.3
0.7 29.1 28.0 26.8 26.0 25.1 23.1 19.9

Naive KNN - 28.7
Table 1

Experiments on non-adaptive classifiers. Empirical excess risk (unit: 10−4) is given
under different choices of β, γ and nP .

β Method γ nP = 50 100 200 400 800 1600 3200

0.35
f̂a

0.35 19.5 14.0 8.0 3.5 2.1 1.3 0.7
0.5 23.0 17.9 16.3 12.2 6.5 3.3 1.5
0.7 31.1 29.1 26.8 24.9 18.3 14.4 8.1

Lepski’s - 33.0

0.5
f̂a

0.35 17.7 13.2 6.2 4.4 1.9 0.9 0.4
0.5 24.4 21.6 16.8 10.5 6.3 2.4 1.2
0.7 28.6 22.8 20.5 17.7 17.3 15.0 8.5

Lepski’s - 30.3

0.7
f̂a

0.35 12.9 10.8 6.2 2.0 0.9 0.7 0.3
0.5 22.3 17.2 16.0 9.8 6.2 2.9 1.3
0.7 25.5 24.0 20.5 18.2 14.8 13.0 7.8

Lepski’s - 25.0
Table 2

Experiments on adaptive classifiers. Empirical excess risk (unit: 10−4) is given under
different choices of β, γ and nP .

2. Proof of Auxiliary lemmas of Theorem 1.

2.1. Proof of Lemma 1. We only prove Equation (16) since Equation
(17) can be proved in a similar way.
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β Method n = 10 20 40 80 160 320 640

0.35
f̂a 33.7 28.4 20.6 13.4 7.8 4.0 2.7

Lepski’s 41.4

0.5
f̂a 31.7 22.4 18.8 12.7 5.7 2.6 1.5

Lepski’s 37.7

0.7
f̂a 25.5 21.6 16.4 10.5 5.2 2.5 1.2

Lepski’s 34.4
Table 3

Experiments when there are multiple source distributions. Empirical excess risk (unit:
10−4) is given under different choices of β, and n.

Let B(x, r) = {x′ : ‖x′−x‖ ≤ r} denote a ball centered at x with radius r.
Recall by our assumptions on (P,Q), the marginal density dQX

dλ (x) is lower
bounded by µ− when x ∈ Ω. Therefore for any x ∈ Ω, r < rµ,
(28)

Q(X ∈ B(x, r)) =

∫
B(x,r)∩Ω

dQX
dλ

(y)dy ≥ µ−λ (B(x, r) ∩ Ω) ≥ cµµ−πdrd

where πd = λ(B(0, 1)) is the volume of the d-dimensional unit ball.

When
kQ
nQ
≥ min

{
1
4 ,

cµµ−πdr
d
µ

2

}
, the inequality (16) can be derived from

the trivial bound ‖XQ
(kQ)(x) − x‖ ≤

√
d if we set CD to a large enough

constant. Therefore in the following proof we focus on the case when
kQ
nQ
≤

min{1
4 ,

cµµ−πdr
d
µ

2 }.
Set r0 = (

2kQ
cµµ−πdnQ

)
1
d , by

kQ
nQ

<
cµµ−πdr

d
µ

2 we have r0 < rµ, thus from (28)

we have for any x ∈ Ω,

Q(X ∈ B(x, r0)) ≥ 2kQ
nQ

.

Note that I{XQ
i ∈B(x,r0)} are i.i.d Bernoulli variables with mean Q(X ∈

B(x, r0)) ≥ 2kQ
nQ

. Let Sn(x) =
∑nQ

i=1 I{XQ
i ∈B(x,r0)} count the number of

Q−data whose covariates fall into B(x, r0). Set W ∼ Binomial(nQ,
2kQ
nQ

),

by Bernstein inequality,

(29)

P(Sn(x) < kQ) ≤ P(W < kQ) = P(W − EW < −kQ)

≤ exp(−
k2
Q

2(2kQ + kQ)
) = exp(−kQ

6
).

Inequality (29) implies that probability of the event Sn(x) < kQ is small
for any given x ∈ Ω. To get a union bound, we need to apply this bound on
a set of balls covering the whole support.
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Let B ⊂ Ω be a finite set such that

Ω ⊂
⋃
x∈B

B(x, r0).

Note that Ω ⊂ [0, 1]d, it is easy to construct a feasible set B with |B| ≤
Cr−d0 . This leads to a union bound

P(∃x ∈ B, Sn(x) < kQ) ≤
∑
x∈B

P(Sn(x) < kQ) ≤ Cr−d0 exp

(
−kQ

6

)
.(30)

For any x ∈ Ω, there exist x′ ∈ B such that x ∈ B(x′, r0). Under the
event E2 := {∀x ∈ B, Sn(x) ≥ kQ}, there are at least kQ Q−data covariates

among XQ
1 , ..., X

Q
n in the ball B(x′, r0). The distance from all these points

to x is not larger than 2r0. Thus we have ‖XQ
(kQ)(x)− x‖ ≤ 2r0. Therefore,

P
(
∀x, ‖XQ

(kQ)(x)− x‖ ≤ 2r0

)
≥ P(E2) ≥ 1− Crd0 exp

(
−kQ

6

)
.

Plug in r0 =
(

2kQ
cµµ−πdnQ

) 1
d

we can conclude that with probability at least

1− 2C
cµµ−πd

nQ
kQ

exp
(
−kQ

6

)
, we have ‖XQ

(kQ)(x)−x‖ ≤ 2
(

2
cµµ−πd

) 1
d
(
kQ
nQ

) 1
d
. Set

CD = max

(
2C

cµµ−πd
, 2
(

2
cµµ−πd

) 1
d

)
we can obtain the desired bound (16).

Similar proof applies to bound (17) on P−data, so the lemma can be
proved.

2.2. Proof of Lemma 2. 1. Proof of (18), (19)
Note that EY |X(Y Q

(i)(x)) = ηQ(XQ
(i)(x)). When ζQ(x) ≥ 2Cβ‖XQ

(kQ)(x) −
x‖β we have∣∣∣EY |X (Ȳ Q

(1:kQ)(x)
)
− ηQ(x)

∣∣∣ ≤ 1

kQ

kQ∑
i=1

∣∣∣EY |X (Y Q
(i)(x)

)
− ηQ(x)

∣∣∣
=

1

kQ

kQ∑
i=1

∣∣∣ηQ(XQ
(i)(x))− ηQ(x)

∣∣∣
≤ 1

kQ

kQ∑
i=1

Cβ‖XQ
(i)(x)− x‖β

≤ Cβ‖XQ
(kQ)(x)− x‖β

≤ 1

2
ζQ(x).
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When f∗ = 1 we have ηQ(x)− 1
2 = ζQ(x), thus

EY |X
(
Ȳ Q

(1:kQ)(x)
)
−1

2
≥ (ηQ(x)−1

2
)−
∣∣∣EY |X (Ȳ Q

(1:kQ)(x)
)
− ηQ(x)

∣∣∣ ≥ 1

2
ζQ(x).

When f∗ = 0 we have ηQ(x)− 1
2 = −ζQ(x), thus

EY |X
(
Ȳ Q

(1:kQ)(x)
)
−1

2
≤ (ηQ(x)−1

2
)+
∣∣∣EY |X (Ȳ Q

(1:kQ)(x)
)
− ηQ(x)

∣∣∣ ≤ −1

2
ζQ(x).

Therefore (18), (19) holds as long as cb <
1
2 .

2. Proof of (20), (21)
Note that E(Y P

(i)(x)|XP
1:nP

) = ηP (XP
(i)(x)). When f∗(x) = 1 and ζQ(x) ≥

2Cβ‖XP
(kP )(x)− x‖β we have

EY |X
(
Ȳ P

(1:kP )(x)
)
− 1

2
≥ 1

kP

kQ∑
i=1

EY |X
(
Y P

(i)(x)− 1

2

)

=
1

kP

kP∑
i=1

(
ηP (XP

(i)(x))− 1

2

)

≥ 1

kP

kP∑
i=1

Cγ

(
ηQ(XP

(i)(x))− 1

2

)γ

≥ 1

kP

kP∑
i=1

Cγ

(
max{ηQ(x)− 1

2
− Cβ‖(XP

(i)(x)− x‖β, 0}
)γ

≥ Cγ
(

max{ζQ(x)− Cβ‖(XP
(kP )(x)− x‖β, 0}

)γ
≥ Cγ

(
1

2
ζQ(x)

)γ
.

Similarly when f∗(x) = 0 and ζQ(x) ≥ 2Cβ‖XP
(kP )(x)− x‖ we can obtain

EY |X
(
Ȳ P (x)

)
− 1

2
≤ −Cγ

(
1

2
ζQ(x)

)γ
.

Therefore (20), (21) holds as long as cb <
Cγ
2γ .

3. Proof of (22), (23), (24), (25)

Here we set Cb = 2CβDCβ.

Under the event EQ, from (16) we know ‖XQ
(kQ)(x)−x‖ ≤ CD

(
kQ
nQ

) 1
d
. So

ζQ(x) ≥ Cb
(

max
{
kQ
nQ
, kPnP

})β
d

implies
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ζQ(x) ≥ 2CβC
β
D(
kQ
nQ

)
β
d ≥ 2Cβ‖XQ

(kQ) − x‖
β.

The above inequality is exactly the condition such that (18) and (19)
holds. Therefore we have (22) and (23).

Under the event EP , from (17) we know ‖XP
(kP )(x) − x‖ ≤ CD( kPnP )

1
d . So

ζQ(x) ≥ Cb(max{ kQnQ ,
kP
nP
})βd implies

ζQ(x) ≥ 2CβC
β
D

(
kP
nP

)β
d

≥ 2Cβ‖XP
(kP ) − x‖β.

The above inequality is exactly the condition such that (20) and (21)
holds. Therefore we have (24) and (25).

2.3. Proof of Lemma 3. We will treat x as a fixed point during the fol-
lowing proof. Without loss of generality, we assume f∗(x) = 1. The case
f∗(x) = 0 can be proved by a similar way.

The following proofs are derived under the condition ζQ(x) ≥ Cb(max{ kQnQ ,
kP
nP
})βd .

From lemma 2 we know under EQ (22) and (23) hold, under EP (24) and
(25) hold.

Note that

EY |X
(
η̂NN (x)− 1

2

)
∨ 0 = EY |X

wPkP Ȳ P
(1:kP ) + wQkQȲ

Q
(1:kQ)

wPkP + wQkQ
− 1

2

 ∨ 0

=
wPkP

(
EY |X(Ȳ P

(1:kP ))− 1
2

)
+ wQkQ

(
EY |X(Ȳ Q

(1:kQ))− 1
2

)
wPkP + wQkQ

∨ 0.

So under EQ, from (22) and EY |X(Ȳ P
(1:kP ))− 1

2 > −1 we have

(31) EY |X
(
η̂NN (x)− 1

2

)
∨ 0 ≥ cbwQkQζQ(x)− wPkP

wPkP + wQkQ
∨ 0.

Under EP , from (24) and EY |X(Ȳ Q
(1:kQ))− 1

2 > −1 we have

(32) EY |X
(
η̂NN (x)− 1

2

)
∨ 0 ≥ cbwPkP ζQ(x)γ − wQkQ

wPkP + wQkQ
∨ 0.

Under EP ∩ EQ, from (22), (24) we have

(33) EY |X
(
η̂NN (x)− 1

2

)
∨ 0 ≥ cb

wPkP ζQ(x)γ + wQkQζQ(x)

wPkP + wQkQ
.
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Moreover, observe the formula

η̂NN (x)− 1

2
=

kP∑
i=1

wP
wPkP + wQkQ

Y P
(i)(x) +

kQ∑
i=1

wQ
wPkP + wQkQ

Y Q
(i)(x)− 1

2
.

Note that Y P
(i)(x) ∈ {0, 1} for all i ∈ [nP ], changing any single entry Y P

(i)(x)

will result in changing η̂NN (x)− 1
2 at most wP

wP kP+wQkQ
. For the same reason,

changing any single entry Y Q
(i)(x) will result in changing η̂NN (x)− 1

2 at most
wQ

wP kP+wQkQ
. Condition on XP

1:nP
∪XQ

1:nQ
, Y P

(1), ..., Y
P

(nP ) and Y Q
(1), ..., Y

Q
(nQ) are

all independent, thus by McDiarmid’s inequality,

PY |X(f̂NN (x) 6= f∗Q(x)) = PY |X
(
η̂NN (x)− 1

2
≤ 0

)
=PY |X

((
η̂NN (x)− 1

2

)
− EY |X

(
η̂NN (x)− 1

2

)
≤ −EY |X

(
η̂NN (x)− 1

2

))
≤ exp

(
−

2(EY |X(η̂NN (x)− 1
2) ∨ 0)2

kP ( wP
wP kP+wQkQ

)2 + kQ(
wQ

wP kP+wQkQ
)2

)
.

Plug in (31), (32) or (33) we can obtain the desired bounds stated in the
lemma under event EQ, EP or EP ∩ EQ respectively.

2.4. Proof of Lemma 4. When ζQ(x) < Cbδ the probability bound (27)
is trivial.

So in the following proof we assume ζQ(x) ≥ Cbδ. Then with specific
choices of kP , kQ stated in (26) we have

(34) ζQ(x) ≥ Cbδ ≥ Cb
(

max{kQ
nQ

,
kP
nP
}
)β
d

.

For simplicity, denote t =
ζQ(x)
Cbδ

. We are going to discuss 4 cases depending
on the values of nP and nQ. In each case we will show (27) holds with desired
high probability.

Case 1:
nQ
kQ

exp(−kQ
6 ) < δ1+α and nP

kP
exp(−kP

6 ) < δ1+α

Then based on (34) in lemma 3, under event EP ∩EQ, given Cb > 1 large
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enough, for all x ∈ Ω that satisfies ζQ(x) ≥ Cbδ, we have

PY |X(f̂NN (x) 6= f∗Q(x)) ≤ exp

(
−2c2

b

(wPkP ζQ(x)γ + wQkQζQ(x))2

kPw2
P + kQw2

Q

)

= exp

(
−2c2

b

(δγ · nP δ
d
β · (Cbtδ)γ + δ · nQδ

d
β · Cbtδ)2

nP δ
d
β · δ2γ + nQδ

d
β · δ2

)

= exp

(
−2c2

b

[(Cbt)
γnP δ

2γ+ d
β + (Cbt)nQδ

2+ d
β ]2

nP δ
2γ+ d

β + nQδ
2+ d

β

)
≤ exp

(
−2c2

b min{Cbt, (Cbt)γ}(nP δ2γ+ d
β + nQδ

2+ d
β )
)
.

Note that

nP δ
2γ+ d

β + nQδ
2+ d

β =
nP

(n
2β+d
2γβ+d

P + nQ)
2γβ+d
2β+d

+
nQ

n
2β+d
2γβ+d

P + nQ

≥ nP

(n
2β+d
2γβ+d

P + n
2β+d
2γβ+d

P )
2γβ+d
2β+d

I
{nQ≤n

2β+d
2γβ+d
P }

+
nQ

nQ + nQ
I
{nQ>n

2β+d
2γβ+d
P }

= 2
− 2γβ+d

2β+d I
{nQ≤n

2β+d
2γβ+d
P }

+
1

2
I
{nQ>n

2β+d
2γβ+d
P }

≥ min

{
2
− 2γβ+d

2β+d ,
1

2

}
.

Combine the two inequalities above, because min{Cbt, (Cbt)γ} = C1∧γ
b t1∧γ ,

with constant c1 = 2c2
bC

1∧γ
b min{2−

2γβ+d
2β+d , 1

2}, we have under event EP ∩EQ,
for all x ∈ Ω,

(35) PY |X(f̂NN (x) 6= f∗Q(x)) ≤ exp
(
−c1t

1∧γ) .
From lemma 1 we know

P(EP ∩ EQ) ≥ 1− P(EcP )− P(EcQ)

≥ 1− nP
kP

exp(−kP
6

)− nQ
kQ

exp(−kQ
6

)

≥ 1− 2δ1+α.

Therefore inequality (35) holds with probability larger than 1− 2δ1+α.

Case 2:
nQ
kQ

exp(−kQ
6 ) < δ1+α and nP

kP
exp(−kP

6 ) ≥ δ1+α
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Note that kP
nP

= δ
d
β , thus nP

kP
exp(−kP

6 ) ≥ δ1+α implies

kP ≤ 6(1 + α+
d

β
)(− log δ).

And by nP = kP δ
− d
β we have

(36) nP ≤
6β

2β + d
(1 + α+

d

β
)(n

2β+d
2γβ+d

P + nQ)
d

2β+d log(n
2β+d
2γβ+d

P + nQ).

Then we further divide our discussion into two cases:

1. If n
2β+d
2γβ+d

P ≥ nQ
Then (36) implies

nP ≤
6β

2β + d
(1 + α+

d

β
)(n

2β+d
2γβ+d

P + n
2β+d
2γβ+d

P )
d

2β+d log(n
2β+d
2γβ+d

P + n
2β+d
2γβ+d

P )

≤ 6β

2β + d
(1 + α+

d

β
)2

d
2β+dn

d
2γβ+d

P 2
2β + d

2γβ + d
log nP .

Note that d
2γβ+d < 1, so the above inequality implies nP cannot be

larger than a certain constant depending on α, β, γ and d. Also by

nQ < n
2β+d
2γβ+d

P we know nQ is bounded. Given nP and nQ are both
bounded the inequality (27) is trivial with large enough C1.

2. If n
2β+d
2γβ+d

P < nQ
We have

wPkP = δγkP ≤ 6(1 + α+
d

β
)(− log δ)δγ <

cb
4
.

when δ is smaller than some constant depending on α, β, γ, d and cb.
(When δ is larger than this constant, the inequality (27) is trivial with
large enough C1.)
Also we have

wQkQζQ(x) ≥ Cbδ
2β+d
β nQ ≥

nQ

n
2β+d
2γβ+d

P + nQ

≥ 1

2
.

given Cb > 1 is large enough.
Note that ζQ(x) < 1

2 , given cb < 1 is small enough, combine two
inequalities above we have

cbwQkQζQ(x)−wPkP ≥
1

3
(cbwQkQζQ(x)+wPkP ) ≥ cb

3
(wQkQζQ(x)+wPkP ζQ(x)γ).
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Then based on (34) Lemma 3, we have under event EQ, given Cb > 1
large enough, for all x that satisfies ζQ(x) ≥ Cbδ,

PY |X(f̂NN (x) 6= f∗Q(x)) ≤ exp

(
−2c2

b

[(wQkQζQ(x)− wPkP ) ∨ 0]2

kPw2
P + kQw2

Q

)

≤ exp

(
−2

9
c2
b

(wQkQζQ(x) + wPkP ζQ(x)γ)2

kPw2
P + kQw2

Q

)
.

Then follow similar proofs in case 1 we have with proper choice of c1,
inequality (35) holds with probability at least

P(EQ) ≥ 1− nQ
kQ

exp(−kQ
6

) ≥ 1− δ1+α.

Case 3:
nQ
kQ

exp(−kQ
6 ) ≥ δ1+α and nP

kP
exp

(
−kP

6

)
< δ1+α

The proof is symmetric to the proof of case 2. Thus we omit the proof
here.

Case 4:
nQ
kQ

exp(−kQ
6 ) ≥ δ1+α and nP

kP
exp(−kP

6 ) ≥ δ1+α

In this case we still have inequality (36)

nP ≤
6β

2β + d
(1 + α+

d

β
)(n

2β+d
2γβ+d

P + nQ)
d

2β+d log(n
2β+d
2γβ+d

P + nQ).

And similarly
nQ
kQ

exp(−kQ
6 ) ≥ δ1+α implies

nQ ≤
6β

2β + d
(1 + α+

d

β
)(n

2β+d
2γβ+d

P + nQ)
d

2β+d log(n
2β+d
2γβ+d

P + nQ).

Combine two inequalities above we have

nP∨nQ ≤
6β

2β + d
(1+α+

d

β
)((nP∨nQ)

2β+d
2γβ+d+(nP∨nQ))

d
2β+d log((nP∨nQ)

2β+d
2γβ+d+(nP∨nQ)).

which implies nP ∨nQ is upper bounded by some constant. Therefore the
inequality (27) is trivial with large enough C1.
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3. Proof of Theorem 2. The proof of lower bound theorem 2 are
mainly based on a construction of two families of distributions Pσ and
Qσ, σ ∈ {0, 1}m and applying Assouad’s lemma on family P⊗nPσ ×Q⊗nQσ , σ ∈
{0, 1}m.

First, let’s define several quantities which will be used later in the proof.
Let

r = cr(n
2β+d
2γβ+d

P + nQ)
− 1

2β+d , w = cwr
d, m = bcmrαβ−dc.

where cr, cw, cm are universal constants which will be specified later. It is
worthwhile to mention that as n = nP + nQ → ∞, there will be r, w → 0
and m→∞ because αβ < d.

Let

G = {(6k1r, 6k2r, ..., 6kdr), ki = 1, 2, ..., b(6r)−1c, i = 1, 2, ..., d}.

be a grid of |G| = M = b(6r)−1cd points in the unit cube Ω. Denote
x1, x2, ..., xM as points in G.

We are interested in B(xk, 2r), k = 1, 2, ...,m balls with radius 2r centered
at xk. Let Bc = Ω\⋃m

k=1B(xk, 2r) denote the points that aren’t in any of
the m balls. Note that B(xk, 2r), k = 1, 2, ...,m are mutually disjoint, so
B(xk, 2r), k = 1, 2, ...,m and Bc forms a partition of Ω. A side note of above
arguments: extracting m center points out of M is feasible because

m ≈ cmrαβ−d < cmr
−d < (6r)−d ≈M

provided cm is small enough.
Define function g(·) on [0,∞):

g(z) =


1 0 ≤ z < 1

2− z 1 ≤ z < 2

0 z ≥ 2

.

And define
hQ(z) = Cβr

βgβ(z/r)

hP (z) = CγC
γ
βr

βγgβγ(z/r).

By r ≤ cr we have max(hQ(z), hP (z)) ≤ max(Cβc
β
r , CγC

γ
βc
βγ
r ). We choose

cr small enough so that max(hQ(z), hP (z)) < 1.
Define the hypercube H of pairs (Pσ, Qσ) by

H = {(Pσ, Qσ), σ = (σ1, σ2, ..., σm) ∈ {−1, 1}m}
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where both Pσ, Qσ are probability distributions of (X,Y ) on Rd × {0, 1}.
We will construct each (Pσ, Qσ) ∈ H by specifying conditional distributions
Pσ,Y |X , Qσ,Y |X and marginal distributions Pσ,X , Qσ,X .

Construction of Pσ,Y |X and Qσ,Y |X :
It is equivalent to specify regression functions ηP,σ(x) and ηQ,σ(x), defined

as follows:

ηP,σ(x) =

{
1
2 (1 + σkhP (‖x− xk‖)) if x ∈ B(xk, 2r) for some k = 1, 2, ...,m
1
2 otherwise (equivalently x ∈ Bc).

ηQ,σ(x) =

{
1
2 (1 + σkhQ(‖x− xk‖)) if x ∈ B(xk, 2r) for some k = 1, 2, ...,m
1
2 otherwise (equivalently x ∈ Bc).

Construction of Pσ,X and Qσ,X :
Let Pσ,X , Qσ,X , σ ∈ {0, 1}m all have the same marginal distribution on

X, with density µ(x). Define µ(x) as follows:

µ(x) =


w

λ[B(xk,r)]
if x ∈ B(xk, r) for some k = 1, 2, ...,m

1−mw
λ[Bc]

if x ∈ Bc
0 otherwise.

It is easy to verify that µ(x) is a density function on Ω.
Given the construction, next we are going to verify that distribution pairs

(Pσ, Qσ) ∈ H satisfies our assumptions, i.e.

(Pσ, Qσ) ∈ Π(α, β, γ, µ) for all (Pσ, Qσ) ∈ H.

Verify Margin Assumption (α): For any σ ∈ {−1, 1}m we have

Pσ(0 < |ησ,Q(X)− 1

2
| ≤ t)

=mPσ(0 < hQ(‖X − x1‖) ≤ 2t)

=m

∫
B(x1,r)

I{0<hQ(‖X−x1‖)≤2t}
w

λ[B(xk, r)]
dx

=mwI{t≥Cβrβ/2}
=cmcwr

αβI{t≥Cβrβ/2} ≤ Cαt
α.

provided that cm < Cα(Cβ/2)α/cw is small enough. So Q ∈M(α,Cα)
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Verify Hölder Smoothness (β): Note that g(z) is 1-Lipschitz. For
any x, x′ ∈ B(xk, 2r), the basic inequality |aβ − bβ| < |a− b|β implies∣∣hQ(‖x− xk‖)− hQ(‖x′ − xk‖)

∣∣ = Cβr
β
∣∣gβ(‖x− xk‖/r)− gβ(‖x′ − xk‖/r)

∣∣
≤ Cβrβ

∣∣g(‖x− xk‖/r)− g(‖x′ − xk‖/r)
∣∣β

≤ Cβrβ
∣∣‖x− xk‖/r − ‖x′ − xk‖/r∣∣β

≤ Cβ‖x− x′‖β.

So hQ(‖x− xk‖) ∈ H(β,Cβ). It is easy to extend to show that ηQ,σ(x) ∈
H(β,Cβ).

Verify Relative Signal Exponent (γ): If x ∈ B(xk, 2r) for some
k = 1, 2, ...,m, then σk = 1 suggests ηP,σ(x) − 1

2 ≥ 0 and ηQ,σ(x) − 1
2 ≥ 0;

σk = −1 suggests ηP,σ(x) − 1
2 ≤ 0 and ηQ,σ(x) − 1

2 ≤ 0. If x ∈ Bc then
ηP,σ(x)− 1

2 = ηQ,σ(x)− 1
2 = 0. Therefore (6) is verified.

Also note that if x ∈ B(xk, 2r) for some k = 1, 2, ...,m,

|ηP,σ(x)− 1

2
| = CγC

γ
βr

βγgβγ(‖x− xk‖/r) = Cγ |ηQ,σ(x)− 1

2
|.

And if x ∈ Bc we have

|ηP,σ(x)− 1

2
| = 0 = Cγ |ηQ,σ(x)− 1

2
|.

Therefore (7) is verified. So (P,Q) ∈ Γ(γ,Cγ)
Verify Strong Density Assumption (µ): It is easy to see that the

support of µσ(x): Bc
⋃

(
⋃m
k=1B(xk, r)) is regular.

If x ∈ Bc we have

µ(x) =
1−mw

1−mλ[B(x1, 2r)]
=

1− cmcwrαβ
1− 2dcmπdrαβ

= 1 + o(1).

If x ∈ B(xk, r) for some k = 1, 2, ...,m we have

µ(x) =
w

λ[B(x1, r)]
= π−1

d cw.

Thus the marginal distribution satisfies strong density assumption with
µ provided that πdµ− < cw < πdµ+.

So now we can conclude that the hypercube H ⊂ Π(α, β, γ, µ) with proper
choices of cr, cm and cw.

Finally, we are going to apply Assouad’s lemma to proof the lower bound.
let H(·, ·) denote the Hellinger distance between two measures. If σ, σ′ ∈
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{0, 1}n are two indices that differ only at one element, i.e. σk 6= σ′k for some
k and σi = σ′i for all i 6= k. We have

H2(Qσ, Qσ′) =
1

2

∫
µ(x)

((√
ηQ,σ(x)−

√
ηQ,σ′(x)

)2

+

(√
1− ηQ,σ(x)−

√
1− ηQ,σ′(x)

)2
)
dx

=
1

2

∫
B(xk,r)

w

λ[B(xk, r)]
· 2
(√

1

2
(1 + Cβrβ)−

√
1

2
(1− Cβrβ)

)2

dx

= w
(

1−
√

1− C2
βr

2β
)

≤ C2
βwr

2β.

Similarly we have

H2(Pσ, Pσ′) =
1

2

∫
µ(x)

((√
ηP,σ(x)−

√
ηP,σ′(x)

)2

+

(√
1− ηP,σ(x)−

√
1− ηP,σ′(x)

)2
)
dx

=
1

2

∫
B(xk,r)

w

λ[B(xk, r)]
· 2
(√

1

2
(1 + CγC

γ
βr

βγ)−
√

1

2
(1− CγCγβrβγ)

)2

dx

= w

(
1−

√
1− C2

γC
2γ
β r2βγ

)
≤ C2

γC
2γ
β wr2βγ .

Therefore we have

H2(P⊗nPσ ×Q⊗nQσ ,P⊗nPσ′ ×Q⊗nQσ′ ) ≤ nPH2(Pσ, Pσ′) + nQH
2(Qσ, Qσ′)

≤C2
γC

2γ
β cwnP r

2βγ+d + C2
βcwnQr

2β+d

≤C2
γC

2γ
β cwc

2γβ+d
r nP (n

2β+d
2γβ+d

P + nQ)
− 2βγ+d

2β+d + C2
βcwc

2β+d
r nQ(n

2β+d
2γβ+d

P + nQ)−1

≤max(C2
γC

2γ
β cwc

2γβ+d
r , C2

βcwc
2β+d
r )

·
(
nP (n

2β+d
2γβ+d

P + nQ)
− 2βγ+d

2β+d + nQ(n
2β+d
2γβ+d

P + nQ)−1

)
≤2 max(C2

γC
2γ
β cwc

2γβ+d
r , C2

βcwc
2β+d
r )

≤1

4
.

provided that cr is small enough (doesn’t depend on choice of σ, σ′).
The above bound on Hellinger distance implies that

(37)

TV (P⊗nPσ ×Q⊗nQσ , P⊗nPσ′ ×Q
⊗nQ
σ′ ) ≤

√
2H(P⊗nPσ ×Q⊗nQσ , P⊗nPσ′ ×Q

⊗nQ
σ′ ) ≤

√
2

2
.
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Also, for any classifier f̂ we have
(38)

RQσ(f̂) +RQσ′ (f̂) =2EX∼QX,σ(|ηQ(X)− 1

2
|I{f̂(X)=f∗Qσ (X)})

+ 2EX∼QX,σ′ (|ηQ(X)− 1

2
|I{f̂(X)=f∗Qσ′

(X)})

=2

m∑
i=1

∫
B(xi,r)

µ(x) · 1

2
Cβr

β ·
(
I{f̂(x)=f∗Qσ (x)} + I{f̂(x)=f∗Qσ′

(x)}

)
dx

≥
∫
B(xk,r)

µ(x) · Cβrβ ·
(
I{f̂(x)=f∗Qσ (x)} + I{f̂(x)=f∗Qσ′

(x)}

)
dx

=Cβwr
β.

Because when x ∈ B(xk, r) we have f∗Qσ(x) 6= f∗Qσ′
(x) thus I{f̂(x)=f∗Qσ (x)} +

I{f̂(x)=f∗Qσ′
(x)} = 1.

Finally, apply the Assouad’s lemma based on established inequalities (37)
and (38), we have for all estimators f̂ ,

max
(P,Q)∈H

EQ(f̂) ≥ m

2
·Cβwrβ·(1−

√
2

2
) =

2−
√

2

4
Cβcmcwc

(1+α)β
r (n

2β+d
2γβ+d

P +nQ)
−β(1+α)

2β+d .

which gives the minimax lower bound.

4. Proof of Theorem 3. First we give an auxiliary lemma showing an
union bound on difference between any weighted K-NN estimator and its
mean.

Lemma 5. Define weighted K-NN estimator η̂kP ,kQ,w(x) as

η̂kP ,kQ,w(x) = w

∑kP
i=1 Y

P
(i)(x)

kP
+ (1− w)

∑kQ
i=1 Y

Q
(i)(x)

kQ
.

Then with probability at least 1 − δ, for all w ∈ [0, 1], kP ∈ [nP ], kQ ∈
[nQ], x ∈ Rd, we have

|η̂kP ,kQ,w(x)−EY |X η̂kP ,kQ,w(x)| ≤
√(

(d+ 1) log(nP + nQ)− log(δ/2)

)(
w2

kP
+

(1− w)2

kQ

)
.

Take δ = 2(nP +nQ)−2 we have with probability at least 1−2(nP +nQ)−2,
for all w ∈ [0, 1], kP ∈ [nP ], kQ ∈ [nQ], x ∈ Rd,
(39)

|η̂kP ,kQ,w(x)−EY |X η̂kP ,kQ,w(x)| ≤
√

(d+ 3) log(nP + nQ)

(
w2

kP
+

(1− w)2

kQ

)
.
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The proof of Lemma 5 is provided in Section 5. In the following proofs,
we define the event EA be that the inequality (39) holds for all w, kP , kQ
stated in the lemma 5. Thanks to the above lemma we have

P(EA) ≥ 1− 2(nP + nQ)−2.

First of all, let’s define some important quantities. Let

δ = Cδ

((
nP

log(nP + nQ)

) 2β+d
2γβ+d

+
nQ

log(nP + nQ)

)− β
2β+d

where Cδ > 0 is a large constant which will be given later. Define Gδ be the
set

Gδ = {x : ζQ(x) ≥ δ}.
Also we define kopt(x), koptP (x), koptQ (x) be the ”optimal” (oracle) choices

of number of neighbors defined by

kopt(x) = max
‖X(k)(x)−x‖≤( δ

2Cβ
)1/β

k,

koptP (x) = k
(kopt(x))
P , koptQ (x) = k

(kopt(x))
Q .

where k
(kopt(x))
P (k

(kopt(x))
Q ) is number of covariates from P−data (Q−data)

among all kopt(x) nearest covariates to x, as is defined in Algorithm 1. We
will sometimes omit x and just write kopt, koptP , koptQ if no confusion in the
context.

Define kstop(x) be the stopping time of the algorithm 1. i.e.

kstop(x) = min
r̂(k)>(d+3) log(nP+nQ)

k.

And let kstop(x) =∞ if the algorithm doesn’t stop till the end. Similarly
denote

kstopP (x) = k
(kstop(x))
P , kstopQ (x) = k

(kstop(x))
Q .

And sometimes we will omit x for simplicity.
Next we are going to state several claims leading to prove theorem 3 step

by step. After each claim we will directly provide a proof of that claim.

Claim 1. If x ∈ Gδ, kP ≤ koptP (x), kQ ≤ koptQ (x), we have
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1. When f∗(x) = 1,

(40) EY |X(Ȳ P
(1:kP )(x))− 1

2
≥ cbδγ

(41) EY |X(Ȳ Q
(1:kQ)(x))− 1

2
≥ cbδ.

2. When f∗(x) = 0,

(42) EY |X(Ȳ P
(1:kP )(x))− 1

2
≤ −cbδγ

(43) EY |X(Ȳ Q
(1:kQ)(x))− 1

2
≤ −cbδ.

Proof of claim 1. Note that if x ∈ Gδ, kP ≤ koptP , we have

‖XP
(kP )(x)− x‖ ≤ ‖XP

(koptP )
(x)− x‖ ≤ ‖X(kopt)(x)− x‖ ≤ (

δ

2Cβ
)1/β.

Therefore we have

ζQ(x) ≥ δ ≥ 2Cβ‖XP
(kP )(x)− x‖β.

Apply lemma 2 we can obtain (40) and (42) given ζQ(x) ≥ δ > 0
Similarly, note that if x ∈ Gδ, kQ ≤ koptQ , we have

‖XQ
(kQ)(x)− x‖ ≤ ‖XQ

(koptQ )
(x)− x‖ ≤ ‖X(kopt)(x)− x‖ ≤ (

δ

2Cβ
)1/β.

Therefore we have

ζQ(x) ≥ δ ≥ 2Cβ‖XQ
(kQ)(x)− x‖β.

Apply lemma 2 we can obtain (41) and (43) given ζQ(x) ≥ δ > 0.

Claim 2. Under event EA, if x ∈ Gδ and kstop(x) ≤ kopt(x), then the
output of algorithm is correct, i.e. f̂a(x) = f∗(x).
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Proof of claim 2. kstop(x) ≤ kopt(x) implies kstop <∞ so the algorithm
stops at the round kstop. By the stopping rule we know that

r̂(kstop) > (d+ 3) log(nP + nQ).

By construction of r̂(kstop) it is easy to show that

√
r(kstop) = max

w

∣∣∣∣w(Ȳ P
(1:kstopP )

(x)− 1
2) + (1− w)(Ȳ Q

(1:kstopQ )
(x)− 1

2)

∣∣∣∣√
w2

kstopP

+ (1−w)2

kstopQ

.

Let w0 be one of the value of w such that right hand side takes its maxi-
mum. Combine two formulas above we have∣∣∣∣w0Ȳ

P
(1:kstopP )

(x) + (1− w0)Ȳ Q

(1:kstopQ )
(x)− 1

2

∣∣∣∣ >
√

(d+ 3) log(nP + nQ)(
w2

0

kstopP

+
(1− w0)2

kstopQ

).

For simplicity we may rewrite the left hand side as |η̂kstopP ,kstopQ ,w0
| as is

defined in lemma 5. By definition of EA we know that under EA we have

|η̂kstopP ,kstopQ ,w0
(x)−EY |X η̂kstopP ,kstopQ ,w0

(x)| ≤
√

(d+ 3) log(nP + nQ)(
w2

0

kstopP

+
(1− w0)2

kstopQ

).

Combine two inequalities above we have

|η̂kstopP ,kstopQ ,w0
(x)− 1

2
| > |(η̂kstopP ,kstopQ ,w0

(x)− 1

2
)−(EY |X η̂kstopP ,kstopQ ,w0

(x)− 1

2
)|,

which implies

sign(η̂kstopP ,kstopQ ,w0
(x)− 1

2
) = sign(EY |X η̂kstopP ,kstopQ ,w0

(x)− 1

2
) 6= 0.

Note that kstop(x) ≤ kopt(x) implies kstopP (x) ≤ koptQ (x) and kstopQ (x) ≤
koptQ (x), given x ∈ Gδ, by claim 1 we have when f∗(x) = 1,

EY |X η̂kstopP ,kstopQ ,w0
(x)− 1

2
≥ cb(w0δ

γ + (1− w0)δ) > 0.

And when f∗(x) = 0, we have

EY |X η̂kstopP ,kstopQ ,w0
(x)− 1

2
≤ −cb(w0δ

γ + (1− w0)δ) < 0.
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So,

sign(η̂kstopP ,kstopQ ,w0
(x)−1

2
) = sign(EY |X η̂kstopP ,kstopQ ,w0

(x)−1

2
) =

{
1 if f∗(x) = 1

−1 if f∗(x) = 0
.

By simple calculation one can show that

sign(η̂kstopP ,kstopQ ,w0
(x)−1

2
) = sign(

√
kstopP

(
Y P

(1:kstopP )
(x)− 1

2

)
+
√
kstopQ

(
Y Q

(1:kstopQ )
(x)− 1

2

)
) 6= 0.

Therefore,

f̂a(x) = I
{
√
kstopP (Y P

(1:k
stop
P

)
(x)− 1

2
)+

√
kstopQ (Y Q

(1:k
stop
Q

)
(x)− 1

2
)≥0}

= I{η̂
k
stop
P

,k
stop
Q

,w0
(x)− 1

2
≥0} = f∗(x).

Claim 3. There exist a constant C2 > 0 such that, with probability at
least 1− C2δ

1+α, we have f̂a(x) = f∗(x) for all x ∈ Gδ.

Proof of claim 3. Here we divide our discussion into two cases:

Case 1:
(

nP
log(nP+nQ)

) 2β+d
2γβ+d ≤ nQ

log(nP+nQ)

Case 2:
(

nP
log(nP+nQ)

) 2β+d
2γβ+d

>
nQ

log(nP+nQ)

The proofs for the above two cases are symmetric so here we only dis-
cuss the first case. Thus until the end of the proof of claim 3 we assume(

nP
log(nP+nQ)

) 2β+d
2γβ+d ≤ nQ

log(nP+nQ) .

Let kQ =
nQ
CdD

( δ
2Cβ

)
d
β . Apply lemma 1 with kQ = kQ, we know that with

probability at least 1− CD nQ
kQ

exp(−kQ
6 ), for all x we have

‖XQ
kQ

(x)− x‖ ≤ CD(
kQ
nQ

)
1
d .

We still let EQ denote the event that above inequality holds for all x. Now
we have

P(EQ) ≥ 1− CD
nQ
kQ

exp(−
kQ
6

).

Under event EQ, we have for all x,

‖XQ
kQ

(x)− x‖ ≤ CD(
kQ
nQ

)
1
d = (

δ

2Cβ
)
1
β < ‖XQ

koptQ +1
(x)− x‖,
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which implies

koptQ (x) ≥ kQ =
nQ

CdD
(
δ

2Cβ
)
d
β for all x.

Therefore, under event EQ, for all x ∈ Gδ ∩ {f∗(x) = 1}, apply claim 1
we have
(44)√
koptQ (x)

(
EY |X(Ȳ Q

(1:koptQ )
)− 1

2

)
≥
√
nQ

CdD
(
δ

2Cβ
)
d
β · cbδ

=

√√√√ c2
bC

2+d/β
δ

CdD(2Cβ)d/β
nQ

((
nP

log(nP + nQ)

) 2β+d
2γβ+d

+
nQ

log(nP + nQ)

)−1

≥

√√√√ c2
bC

2+d/β
δ

CdD(2Cβ)d/β
nQ

(
2

nQ
log(nP + nQ)

)−1

≥ 3
√

(d+ 3) log(nP + nQ)

with large enough choice of constant Cδ.
In addition, under event EA, with choice of w = 0 and kQ = koptQ (x), we

have for all x,

(45) |Ȳ Q

(1:koptQ )
− EY |X(Ȳ Q

(1:koptQ )
)| ≤

√
(d+ 3) log(nP + nQ)

koptQ

.

Combine (44) and (45) together, under EQ∩EA, for all x ∈ Gδ∩{f∗(x) =
1} we have√
koptQ (x)

(
Ȳ Q

(1:koptQ )
− 1

2

)
≥
√
koptQ (x)

(
EY |X(Ȳ Q

(1:koptQ )
)− 1

2

)
−
√
koptQ (x)|Ȳ Q

(1:koptQ )
− EY |X(Ȳ Q

(1:koptQ )
)|

≥3
√

(d+ 3) log(nP + nQ)−
√

(d+ 3) log(nP + nQ)

>
√

(d+ 3) log(nP + nQ).

Apply similar derivation, we can obtain that under EQ ∩ EA, for all x ∈
Gδ ∩ {f∗(x) = 0} we have√

koptQ (x)

(
Ȳ Q

(1:koptQ )
− 1

2

)
≤ −

√
(d+ 3) log(nP + nQ).
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Therefore, under EQ ∩ EA, for all x ∈ Gδ we have

koptQ (x)

(
Ȳ Q

(1:koptQ )
− 1

2

)2

> (d+ 3) log(nP + nQ).

Note that r̂(kopt) > koptQ (x)

(
Ȳ Q

(1:koptQ )
− 1

2

)2

so

r̂(kopt) > (d+ 3) log(nP + nQ).

This means that the algorithm 1 must stop at the round k = kopt(x) if it
does not stop earlier.

Therefore, under EQ ∩ EA, for all x ∈ Gδ, we have

kstop(x) ≤ kopt(x).

Now apply claim 2 we know kstop(x) ≤ kopt(x) implies

f̂a(x) = f∗(x).

for all x ∈ Gδ under event EQ ∩ EA.
So it remains to show that probability of the above event is at least

1 − C2δ
1+α, i.e. we are going to show there exist a constant C2 > 0 such

that
P(EQ ∩ EA) ≥ 1− C2δ

1+α.

It suffices to show that there exist some constants C21, C22 > 0 such that

P(EcA) ≤ C21δ
1+α P(EcQ) ≤ C22δ

1+α.

First, by lemma 5 we have

P(EcA) ≤ 2(nP + nQ)−2.

Note that αβ ≥ d we have

max(
2β + d

2γβ + d
· β(1 + α)

2β + d
,
β(1 + α)

2β + d
) <

β + βα

d
≤ 1 + d

d
≤ 2.

So

P(EcA) ≤ 2(nP + nQ)−2 < 2(n
2β+d
2γβ+d

P + nQ)
−β(1+α)

2β+d < 2δ1+α.



22 T. T. CAI AND H. WEI

Then we are going to bound P(EQ). By lemma 1 we have

P(EcQ) ≤ CD
nQ
kQ

exp(−
kQ
6

).

And by
(

nP
log(nP+nQ)

) 2β+d
2γβ+d ≤ nQ

log(nP+nQ) we have

nQ >
nQ

log(nP + nQ)
≥ 1

4

(
nQ

log(nP + nQ)
+

(
nP

log(nP + nQ)

) 2β+d
2γβ+d

)
=

1

4
δ
−(2+ d

β
)
.

Thus

P(EcQ)

δ1+α
≤ Cd+1

D (2Cβ)
d
β δ−(1+α+d/β) exp(− nQ

6CdD
(
δ

2Cβ
)
d
β )

≤ Cd+1
D (2Cβ)

d
β δ−(1+α+d/β) exp(− 1

24CdD(2Cβ)
d
β

δ−2).

The right hand side goes to zero as δ → 0, so it is bounded by some large
enough constant C22. Thus we have

P(EcQ) ≤ C22δ
1+α.

Now the proof of claim 3 is completed.

Proof of theorem 3. Let the event EW be that f̂a(x) = f∗(x) for all
x ∈ Gδ. From claim 3 we know

P(EcW ) ≤ C2δ
1+α.

Note that under EZ , f̂a(x) 6= f∗(x) implies that x /∈ Gδ. So we have

EEQ(f̂a) = E[EX∼QX (ζQ(X)I{f̂a(X)6=f∗(X)})]

≤ E[EX∼QX (ζQ(X)I{f̂a(X)6=f∗(X)})|EW ] + 1 · P(EcW )

≤ E[EX∼QX (ζQ(X)I{X/∈Gδ})|EW ] + P(EcW )

= EX∼QX (ζQ(X)I{ζQ(X)<δ}) + P(EcW )

≤ δPX∼QX (ζQ(X) < δ) + P(EcW )

≤ δ · Cαδα + C2δ
1+α

= Cδ(Cα + C2)

((
nP

log(nP + nQ)

) 2β+d
2γβ+d

+
nQ

log(nP + nQ)

)−β(1+α)
2β+d

.
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5. Proof of Lemma 5. Note that conditional on X1:n, Y P
(i)(x), i =

1, 2, ..., nP are independent Bernoulli variables. So by Hoeffding’s inequality

(46) PY |X(|Ȳ P
(1:kP )(x)− EY |X Ȳ P

(1:kP )(x)| > ε) ≤ 2 exp
(
−2kP ε

2
)
.

For the same reason about Q−data we also have

(47) PY |X(|Ȳ Q
(1:kQ)(x)− EY |X Ȳ

Q
(1:kQ)(x)| > ε) ≤ 2 exp

(
−2kQε

2
)
.

Note that for any x, XP
(1)(x), XP

(2)(x), ..., XP
(kP )(x) form a set of points that

falls in the ball B(x, ‖XP
(kP )(x)− x‖). It is well-known that total number of

sets of form A = {XP
1 , X

P
2 , ..., X

P
nP
} ∩ B(x, r), with x ∈ Rd, r ≥ 0, i.e. the

number of ways Q−covariates intercept with a ball, is upper-bounded by
nd+1
Q . This implies there are at most nd+1

P possible different random variables

of form Ȳ P
(1:kP )(x) with x ∈ Rd and kP ∈ [nP ]. For Similar reason, there are

at most nd+1
Q possibilities of Ȳ Q

(1:kQ)(x).

Plug ε =
√

(d+1) log(nP+nQ)−log(δ/2)
2kP

into (46), plug ε =
√

(d+1) log(nP+nQ)−log(δ/2)
2kQ

into (47), and apply the union bound, we have

PY |X
(
∃x, kP , kQ s.t. |Ȳ P

(1:kP )(x)− EY |X Ȳ P
(1:kP )(x)| >

√
(d+ 1) log(nP + nQ)− log(δ/2)

2kP

or Ȳ Q
(1:kQ)(x)− EY |X Ȳ

Q
(1:kQ)(x)| >

√
(d+ 1) log(nP + nQ)− log(δ/2)

2kQ

)
≤ nd+1

P · δ

(nP + nQ)d+1
+nd+1

Q · δ

(nP + nQ)d+1
≤ δ.

So with probability at least 1− δ we have for all x, kP , kQ

(48) |Ȳ P
(1:kP )(x)− EY |X Ȳ P

(1:kP )(x)| ≤
√

(d+ 1) log(nP + nQ)− log(δ/2)

2kP
.

(49) |Ȳ Q
(1:kQ)(x)− EY |X Ȳ

Q
(1:kQ)(x)| ≤

√
(d+ 1) log(nP + nQ)− log(δ/2)

2kQ
.
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Note that ηkP ,kQ,w(x) = wȲ P
(1:kP )(x) + (1 − w)Ȳ P

(1:kQ)(x). By Cauchy-

Schwarz inequality, (48) and (49) jointly imply

|ηkP ,kQ,w(x)− EηkP ,kQ,w(x)| ≤w|Ȳ P
(1:kP )(x)− EY |X Ȳ P

(1:kP )(x)|
+ (1− w)|Ȳ P

(1:kP )(x)− EY |X Ȳ P
(1:kP )(x)|

≤
√

(d+ 1) log(nP + nQ)− log(δ/2)(w(2kP )−
1
2 + (1− w)(2kQ)−

1
2 )

≤
√

(d+ 1) log(nP + nQ)− log(δ/2)

√
2

(
w2

2kP
+

(1− w)2

2kQ

)

=

√(
(d+ 1) log(nP + nQ)− log(δ/2)

)(
w2

kP
+

(1− w)2

kQ

)
.

Therefore the above bound holds for all kP , kQ, w with probability at least
1− δ.

6. Proof of Theorem 4. The proof of Theorem 4 is very similar to
the proof of Theorem 3, thus we will omit the proof of claims below.

First, define

δ0 = Cδ

( nP
log(nP + nQ)

) 2β0+d
2γ0β0+d

+
nQ

log(nP + nQ)

−
β0

2β0+d

where Cδ > 0 is a large constant which will be given later.
Also we define kopt, koptP , koptQ be the ”optimal” (oracle) choices of number

of neighbors defined by

kopt = max
‖X(k)(x0)−x0‖≤(

δ0
2Cβ

)1/β0
k,

koptP = k
(kopt)
P , koptQ = k

(kopt)
Q .

where k
(kopt)
P (k

(kopt)
Q ) is number of covariates from P−data (Q−data)

among all kopt nearest covariates to x0, as is defined in Algorithm 1.
Define kstop be the stopping time of the algorithm 1. i.e.

kstop = min
r̂(k)>(d+3) log(nP+nQ)

k.

And let kstop = ∞ if the algorithm doesn’t stop till the end. Similarly
denote

kstopP = k
(kstop)
P , kstopQ = k

(kstop)
Q .
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Note that local smoothness β0 and local relative signal exponent γ0 are
specified within a ball B(x0, r). We can divided the following discussion into
two parts depending on the value of r and the value of ηQ(x0).

Case 1: If r ≤
(

δ0
2Cβ

)1/β0
, this means δ0 ≥ 2Cβr

β0 is bounded below. So

the desired inequality

EQ(f̂a, x0) ≤ C

( nP
log n

) 2β0+d
2γ0β0+d

+
nQ

log n

−
β0

2β0+d

always holds with large enough C.

Case 2: If r >
(

δ
2Cβ

)1/β0
and |ηQ(x0) − 1

2 | ≤ δ. Then from the dual

representation we have

EQ(f̂a, x0) = 2|ηQ(x0)− 1

2
|P
(
f̂a(x0) 6= f∗Q(x0)

)
≤ 2δ0.

The above inequality implies (14).

Case 3: If r >
(

δ
2Cβ

)1/β0
and |ηQ(x0)− 1

2 | > δ. We inherit the definition

of events EA and EQ in the proof of Theorem 3. Following a similar routine,
we can prove the following claims:

Claim 1: If kP ≤ koptP , kQ ≤ koptQ , there exists a constant cb0 > 0 such
that

1. When f∗(x0) = 1,

EY |X(Ȳ P
(1:kP )(x0))− 1

2
≥ cb0δ0

γ0

EY |X(Ȳ Q
(1:kQ)(x0))− 1

2
≥ cb0δ0.

2. When f∗(x0) = 0,

EY |X(Ȳ P
(1:kP )(x0))− 1

2
≤ −cb0δ0

γ0

EY |X(Ȳ Q
(1:kQ)(x0))− 1

2
≤ −cb0δ0.

Claim 2: Under event EA, if kstop ≤ kopt, then f̂a(x0) = f∗(x0).
Claim 3: There exist a constant C20 > 0 such that, with probability at

least 1− C20δ0, we have f̂a(x0) = f∗(x0).
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We omit the proof of above claims because they are intrinsically the same
as the claims in the proof of Theorem 3. Based on Claim 3 and the dual
representation, we have

EQ(f̂a, x0) = 2|ηQ(x0)− 1

2
|P
(
f̂a(x0) 6= f∗Q(x0)

)
≤ C20δ0.
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